/* * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) * Copyright (C) 2003-2017 Apple Inc. All rights reserved. * Copyright (C) 2003 Peter Kelly (pmk@post.com) * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "config.h" #include "JSArray.h" #include "ArrayPrototype.h" #include "ButterflyInlines.h" #include "CodeBlock.h" #include "Error.h" #include "GetterSetter.h" #include "IndexingHeaderInlines.h" #include "JSArrayInlines.h" #include "JSCInlines.h" #include "PropertyNameArray.h" #include "TypeError.h" #include using namespace std; using namespace WTF; namespace JSC { static const char* const LengthExceededTheMaximumArrayLengthError = "Length exceeded the maximum array length"; STATIC_ASSERT_IS_TRIVIALLY_DESTRUCTIBLE(JSArray); const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, CREATE_METHOD_TABLE(JSArray)}; Butterfly* createArrayButterflyInDictionaryIndexingMode( VM& vm, JSCell* intendedOwner, unsigned initialLength) { Butterfly* butterfly = Butterfly::create( vm, intendedOwner, 0, 0, true, IndexingHeader(), ArrayStorage::sizeFor(0)); ArrayStorage* storage = butterfly->arrayStorage(); storage->setLength(initialLength); storage->setVectorLength(0); storage->m_indexBias = 0; storage->m_sparseMap.clear(); storage->m_numValuesInVector = 0; return butterfly; } JSArray* JSArray::tryCreateForInitializationPrivate(VM& vm, GCDeferralContext* deferralContext, Structure* structure, unsigned initialLength) { if (UNLIKELY(initialLength > MAX_STORAGE_VECTOR_LENGTH)) return 0; unsigned outOfLineStorage = structure->outOfLineCapacity(); Butterfly* butterfly; IndexingType indexingType = structure->indexingType(); if (LIKELY(!hasAnyArrayStorage(indexingType))) { ASSERT( hasUndecided(indexingType) || hasInt32(indexingType) || hasDouble(indexingType) || hasContiguous(indexingType)); unsigned vectorLength = Butterfly::optimalContiguousVectorLength(structure, initialLength); void* temp = vm.auxiliarySpace.tryAllocate(deferralContext, Butterfly::totalSize(0, outOfLineStorage, true, vectorLength * sizeof(EncodedJSValue))); if (UNLIKELY(!temp)) return nullptr; butterfly = Butterfly::fromBase(temp, 0, outOfLineStorage); butterfly->setVectorLength(vectorLength); butterfly->setPublicLength(initialLength); if (hasDouble(indexingType)) { for (unsigned i = initialLength; i < vectorLength; ++i) butterfly->contiguousDouble()[i] = PNaN; } else { for (unsigned i = initialLength; i < vectorLength; ++i) butterfly->contiguous()[i].clear(); } } else { unsigned vectorLength = ArrayStorage::optimalVectorLength(0, structure, initialLength); void* temp = vm.auxiliarySpace.tryAllocate(deferralContext, Butterfly::totalSize(0, outOfLineStorage, true, ArrayStorage::sizeFor(vectorLength))); if (UNLIKELY(!temp)) return nullptr; butterfly = Butterfly::fromBase(temp, 0, outOfLineStorage); *butterfly->indexingHeader() = indexingHeaderForArrayStorage(initialLength, vectorLength); ArrayStorage* storage = butterfly->arrayStorage(); storage->m_indexBias = 0; storage->m_sparseMap.clear(); storage->m_numValuesInVector = initialLength; for (unsigned i = initialLength; i < vectorLength; ++i) storage->m_vector[i].clear(); } return createWithButterfly(vm, deferralContext, structure, butterfly); } void JSArray::setLengthWritable(ExecState* exec, bool writable) { ASSERT(isLengthWritable() || !writable); if (!isLengthWritable() || writable) return; enterDictionaryIndexingMode(exec->vm()); SparseArrayValueMap* map = arrayStorage()->m_sparseMap.get(); ASSERT(map); map->setLengthIsReadOnly(); } // Defined in ES5.1 15.4.5.1 bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, PropertyName propertyName, const PropertyDescriptor& descriptor, bool throwException) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); JSArray* array = jsCast(object); // 3. If P is "length", then if (propertyName == vm.propertyNames->length) { // All paths through length definition call the default [[DefineOwnProperty]], hence: // from ES5.1 8.12.9 7.a. if (descriptor.configurablePresent() && descriptor.configurable()) return typeError(exec, scope, throwException, ASCIILiteral(UnconfigurablePropertyChangeConfigurabilityError)); // from ES5.1 8.12.9 7.b. if (descriptor.enumerablePresent() && descriptor.enumerable()) return typeError(exec, scope, throwException, ASCIILiteral(UnconfigurablePropertyChangeEnumerabilityError)); // a. If the [[Value]] field of Desc is absent, then // a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments. if (descriptor.isAccessorDescriptor()) return typeError(exec, scope, throwException, ASCIILiteral(UnconfigurablePropertyChangeAccessMechanismError)); // from ES5.1 8.12.9 10.a. if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable()) return typeError(exec, scope, throwException, ASCIILiteral(UnconfigurablePropertyChangeWritabilityError)); // This descriptor is either just making length read-only, or changing nothing! if (!descriptor.value()) { if (descriptor.writablePresent()) array->setLengthWritable(exec, descriptor.writable()); return true; } // b. Let newLenDesc be a copy of Desc. // c. Let newLen be ToUint32(Desc.[[Value]]). unsigned newLen = descriptor.value().toUInt32(exec); // d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception. if (newLen != descriptor.value().toNumber(exec)) { JSC::throwException(exec, scope, createRangeError(exec, ASCIILiteral("Invalid array length"))); return false; } // Based on SameValue check in 8.12.9, this is always okay. // FIXME: Nothing prevents this from being called on a RuntimeArray, and the length function will always return 0 in that case. if (newLen == array->length()) { if (descriptor.writablePresent()) array->setLengthWritable(exec, descriptor.writable()); return true; } // e. Set newLenDesc.[[Value] to newLen. // f. If newLen >= oldLen, then // f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments. // g. Reject if oldLenDesc.[[Writable]] is false. if (!array->isLengthWritable()) return typeError(exec, scope, throwException, ASCIILiteral(ReadonlyPropertyChangeError)); // h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true. // i. Else, // i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted. // i.ii. Let newWritable be false. // i.iii. Set newLenDesc.[[Writable] to true. // j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments. // k. If succeeded is false, return false. // l. While newLen < oldLen repeat, // l.i. Set oldLen to oldLen – 1. // l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments. // l.iii. If deleteSucceeded is false, then bool success = array->setLength(exec, newLen, throwException); ASSERT(!scope.exception() || !success); if (!success) { // 1. Set newLenDesc.[[Value] to oldLen+1. // 2. If newWritable is false, set newLenDesc.[[Writable] to false. // 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments. // 4. Reject. if (descriptor.writablePresent()) array->setLengthWritable(exec, descriptor.writable()); return false; } // m. If newWritable is false, then // i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", // Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always // return true. if (descriptor.writablePresent()) array->setLengthWritable(exec, descriptor.writable()); // n. Return true. return true; } // 4. Else if P is an array index (15.4), then // a. Let index be ToUint32(P). if (std::optional optionalIndex = parseIndex(propertyName)) { // b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false. uint32_t index = optionalIndex.value(); // FIXME: Nothing prevents this from being called on a RuntimeArray, and the length function will always return 0 in that case. if (index >= array->length() && !array->isLengthWritable()) return typeError(exec, scope, throwException, ASCIILiteral("Attempting to define numeric property on array with non-writable length property.")); // c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments. // d. Reject if succeeded is false. // e. If index >= oldLen // e.i. Set oldLenDesc.[[Value]] to index + 1. // e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true. // f. Return true. scope.release(); return array->defineOwnIndexedProperty(exec, index, descriptor, throwException); } scope.release(); return array->JSObject::defineOwnNonIndexProperty(exec, propertyName, descriptor, throwException); } bool JSArray::getOwnPropertySlot(JSObject* object, ExecState* exec, PropertyName propertyName, PropertySlot& slot) { JSArray* thisObject = jsCast(object); if (propertyName == exec->propertyNames().length) { unsigned attributes = thisObject->isLengthWritable() ? DontDelete | DontEnum : DontDelete | DontEnum | ReadOnly; slot.setValue(thisObject, attributes, jsNumber(thisObject->length())); return true; } return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot); } // ECMA 15.4.5.1 bool JSArray::put(JSCell* cell, ExecState* exec, PropertyName propertyName, JSValue value, PutPropertySlot& slot) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); JSArray* thisObject = jsCast(cell); if (UNLIKELY(isThisValueAltered(slot, thisObject))) { scope.release(); return ordinarySetSlow(exec, thisObject, propertyName, value, slot.thisValue(), slot.isStrictMode()); } if (propertyName == exec->propertyNames().length) { unsigned newLength = value.toUInt32(exec); RETURN_IF_EXCEPTION(scope, false); if (value.toNumber(exec) != static_cast(newLength)) { throwException(exec, scope, createRangeError(exec, ASCIILiteral("Invalid array length"))); return false; } scope.release(); return thisObject->setLength(exec, newLength, slot.isStrictMode()); } scope.release(); return JSObject::put(thisObject, exec, propertyName, value, slot); } bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, PropertyName propertyName) { JSArray* thisObject = jsCast(cell); if (propertyName == exec->propertyNames().length) return false; return JSObject::deleteProperty(thisObject, exec, propertyName); } static int compareKeysForQSort(const void* a, const void* b) { unsigned da = *static_cast(a); unsigned db = *static_cast(b); return (da > db) - (da < db); } void JSArray::getOwnNonIndexPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode) { JSArray* thisObject = jsCast(object); if (mode.includeDontEnumProperties()) propertyNames.add(exec->propertyNames().length); JSObject::getOwnNonIndexPropertyNames(thisObject, exec, propertyNames, mode); } // This method makes room in the vector, but leaves the new space for count slots uncleared. bool JSArray::unshiftCountSlowCase(const AbstractLocker&, VM& vm, DeferGC&, bool addToFront, unsigned count) { ArrayStorage* storage = ensureArrayStorage(vm); Butterfly* butterfly = storage->butterfly(); Structure* structure = this->structure(vm); unsigned propertyCapacity = structure->outOfLineCapacity(); unsigned propertySize = structure->outOfLineSize(); // If not, we should have handled this on the fast path. ASSERT(!addToFront || count > storage->m_indexBias); // Step 1: // Gather 4 key metrics: // * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors). // * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more. // * currentCapacity - what is the current size of the vector, including any pre-capacity. // * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength. unsigned length = storage->length(); unsigned oldVectorLength = storage->vectorLength(); unsigned usedVectorLength = min(oldVectorLength, length); ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH); // Check that required vector length is possible, in an overflow-safe fashion. if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength) return false; unsigned requiredVectorLength = usedVectorLength + count; ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH); // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH. ASSERT(storage->vectorLength() <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - storage->vectorLength()) >= storage->m_indexBias); unsigned currentCapacity = storage->vectorLength() + storage->m_indexBias; // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH. // FIXME: This code should be fixed to avoid internal fragmentation. It's not super high // priority since increaseVectorLength() will "fix" any mistakes we make, but it would be cool // to get this right eventually. unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_ARRAY_STORAGE_VECTOR_LEN, requiredVectorLength) << 1); // Step 2: // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing one. void* newAllocBase = 0; unsigned newStorageCapacity; bool allocatedNewStorage; // If the current storage array is sufficiently large (but not too large!) then just keep using it. if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) { newAllocBase = butterfly->base(structure); newStorageCapacity = currentCapacity; allocatedNewStorage = false; } else { size_t newSize = Butterfly::totalSize(0, propertyCapacity, true, ArrayStorage::sizeFor(desiredCapacity)); newAllocBase = vm.auxiliarySpace.tryAllocate(newSize); if (!newAllocBase) return false; newStorageCapacity = desiredCapacity; allocatedNewStorage = true; } // Step 3: // Work out where we're going to move things to. // Determine how much of the vector to use as pre-capacity, and how much as post-capacity. // If we're adding to the end, we'll add all the new space to the end. // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any. // If it did, we calculate the amount that will remain based on an atomic decay - leave the // vector with half the post-capacity it had previously. unsigned postCapacity = 0; if (!addToFront) postCapacity = max(newStorageCapacity - requiredVectorLength, count); else if (length < storage->vectorLength()) { // Atomic decay, + the post-capacity cannot be greater than what is available. postCapacity = min((storage->vectorLength() - length) >> 1, newStorageCapacity - requiredVectorLength); // If we're moving contents within the same allocation, the post-capacity is being reduced. ASSERT(newAllocBase != butterfly->base(structure) || postCapacity < storage->vectorLength() - length); } unsigned newVectorLength = requiredVectorLength + postCapacity; unsigned newIndexBias = newStorageCapacity - newVectorLength; Butterfly* newButterfly = Butterfly::fromBase(newAllocBase, newIndexBias, propertyCapacity); if (addToFront) { ASSERT(count + usedVectorLength <= newVectorLength); memmove(newButterfly->arrayStorage()->m_vector + count, storage->m_vector, sizeof(JSValue) * usedVectorLength); memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0)); if (allocatedNewStorage) { // We will set the vectorLength to newVectorLength. We populated requiredVectorLength // (usedVectorLength + count), which is less. Clear the difference. for (unsigned i = requiredVectorLength; i < newVectorLength; ++i) newButterfly->arrayStorage()->m_vector[i].clear(); } } else if ((newAllocBase != butterfly->base(structure)) || (newIndexBias != storage->m_indexBias)) { memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0)); memmove(newButterfly->arrayStorage()->m_vector, storage->m_vector, sizeof(JSValue) * usedVectorLength); for (unsigned i = requiredVectorLength; i < newVectorLength; i++) newButterfly->arrayStorage()->m_vector[i].clear(); } newButterfly->arrayStorage()->setVectorLength(newVectorLength); newButterfly->arrayStorage()->m_indexBias = newIndexBias; setButterfly(vm, newButterfly); return true; } bool JSArray::setLengthWithArrayStorage(ExecState* exec, unsigned newLength, bool throwException, ArrayStorage* storage) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); unsigned length = storage->length(); // If the length is read only then we enter sparse mode, so should enter the following 'if'. ASSERT(isLengthWritable() || storage->m_sparseMap); if (SparseArrayValueMap* map = storage->m_sparseMap.get()) { // Fail if the length is not writable. if (map->lengthIsReadOnly()) return typeError(exec, scope, throwException, ASCIILiteral(ReadonlyPropertyWriteError)); if (newLength < length) { // Copy any keys we might be interested in into a vector. Vector keys; keys.reserveInitialCapacity(min(map->size(), static_cast(length - newLength))); SparseArrayValueMap::const_iterator end = map->end(); for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) { unsigned index = static_cast(it->key); if (index < length && index >= newLength) keys.append(index); } // Check if the array is in sparse mode. If so there may be non-configurable // properties, so we have to perform deletion with caution, if not we can // delete values in any order. if (map->sparseMode()) { qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort); unsigned i = keys.size(); while (i) { unsigned index = keys[--i]; SparseArrayValueMap::iterator it = map->find(index); ASSERT(it != map->notFound()); if (it->value.attributes & DontDelete) { storage->setLength(index + 1); return typeError(exec, scope, throwException, ASCIILiteral(UnableToDeletePropertyError)); } map->remove(it); } } else { for (unsigned i = 0; i < keys.size(); ++i) map->remove(keys[i]); if (map->isEmpty()) deallocateSparseIndexMap(); } } } if (newLength < length) { // Delete properties from the vector. unsigned usedVectorLength = min(length, storage->vectorLength()); for (unsigned i = newLength; i < usedVectorLength; ++i) { WriteBarrier& valueSlot = storage->m_vector[i]; bool hadValue = !!valueSlot; valueSlot.clear(); storage->m_numValuesInVector -= hadValue; } } storage->setLength(newLength); return true; } bool JSArray::appendMemcpy(ExecState* exec, VM& vm, unsigned startIndex, JSC::JSArray* otherArray) { auto scope = DECLARE_THROW_SCOPE(vm); if (!canFastCopy(vm, otherArray)) return false; IndexingType type = indexingType(); IndexingType copyType = mergeIndexingTypeForCopying(otherArray->indexingType()); if (type == ArrayWithUndecided && copyType != NonArray) { if (copyType == ArrayWithInt32) convertUndecidedToInt32(vm); else if (copyType == ArrayWithDouble) convertUndecidedToDouble(vm); else if (copyType == ArrayWithContiguous) convertUndecidedToContiguous(vm); else { ASSERT(copyType == ArrayWithUndecided); return true; } } else if (type != copyType) return false; unsigned otherLength = otherArray->length(); Checked checkedNewLength = startIndex; checkedNewLength += otherLength; unsigned newLength; if (checkedNewLength.safeGet(newLength) == CheckedState::DidOverflow) { throwException(exec, scope, createRangeError(exec, ASCIILiteral(LengthExceededTheMaximumArrayLengthError))); return false; } if (newLength >= MIN_SPARSE_ARRAY_INDEX) return false; if (!ensureLength(vm, newLength)) { throwOutOfMemoryError(exec, scope); return false; } ASSERT(copyType == indexingType()); if (type == ArrayWithDouble) memcpy(butterfly()->contiguousDouble().data() + startIndex, otherArray->butterfly()->contiguousDouble().data(), sizeof(JSValue) * otherLength); else memcpy(butterfly()->contiguous().data() + startIndex, otherArray->butterfly()->contiguous().data(), sizeof(JSValue) * otherLength); return true; } bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: if (!newLength) return true; if (newLength >= MIN_SPARSE_ARRAY_INDEX) { scope.release(); return setLengthWithArrayStorage( exec, newLength, throwException, ensureArrayStorage(vm)); } createInitialUndecided(vm, newLength); return true; case ArrayWithUndecided: case ArrayWithInt32: case ArrayWithDouble: case ArrayWithContiguous: { if (newLength == butterfly->publicLength()) return true; if (newLength >= MAX_ARRAY_INDEX // This case ensures that we can do fast push. || (newLength >= MIN_SPARSE_ARRAY_INDEX && !isDenseEnoughForVector(newLength, countElements()))) { scope.release(); return setLengthWithArrayStorage( exec, newLength, throwException, ensureArrayStorage(vm)); } if (newLength > butterfly->publicLength()) { if (!ensureLength(vm, newLength)) { throwOutOfMemoryError(exec, scope); return false; } return true; } unsigned lengthToClear = butterfly->publicLength() - newLength; unsigned costToAllocateNewButterfly = 64; // a heuristic. if (lengthToClear > newLength && lengthToClear > costToAllocateNewButterfly) { reallocateAndShrinkButterfly(vm, newLength); return true; } if (indexingType() == ArrayWithDouble) { for (unsigned i = butterfly->publicLength(); i-- > newLength;) butterfly->contiguousDouble()[i] = PNaN; } else { for (unsigned i = butterfly->publicLength(); i-- > newLength;) butterfly->contiguous()[i].clear(); } butterfly->setPublicLength(newLength); return true; } case ArrayWithArrayStorage: case ArrayWithSlowPutArrayStorage: scope.release(); return setLengthWithArrayStorage(exec, newLength, throwException, arrayStorage()); default: CRASH(); return false; } } JSValue JSArray::pop(ExecState* exec) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: return jsUndefined(); case ArrayWithUndecided: if (!butterfly->publicLength()) return jsUndefined(); // We have nothing but holes. So, drop down to the slow version. break; case ArrayWithInt32: case ArrayWithContiguous: { unsigned length = butterfly->publicLength(); if (!length--) return jsUndefined(); RELEASE_ASSERT(length < butterfly->vectorLength()); JSValue value = butterfly->contiguous()[length].get(); if (value) { butterfly->contiguous()[length].clear(); butterfly->setPublicLength(length); return value; } break; } case ArrayWithDouble: { unsigned length = butterfly->publicLength(); if (!length--) return jsUndefined(); RELEASE_ASSERT(length < butterfly->vectorLength()); double value = butterfly->contiguousDouble()[length]; if (value == value) { butterfly->contiguousDouble()[length] = PNaN; butterfly->setPublicLength(length); return JSValue(JSValue::EncodeAsDouble, value); } break; } case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { ArrayStorage* storage = butterfly->arrayStorage(); unsigned length = storage->length(); if (!length) { if (!isLengthWritable()) throwTypeError(exec, scope, ASCIILiteral(ReadonlyPropertyWriteError)); return jsUndefined(); } unsigned index = length - 1; if (index < storage->vectorLength()) { WriteBarrier& valueSlot = storage->m_vector[index]; if (valueSlot) { --storage->m_numValuesInVector; JSValue element = valueSlot.get(); valueSlot.clear(); RELEASE_ASSERT(isLengthWritable()); storage->setLength(index); return element; } } break; } default: CRASH(); return JSValue(); } unsigned index = getArrayLength() - 1; // Let element be the result of calling the [[Get]] internal method of O with argument indx. JSValue element = get(exec, index); RETURN_IF_EXCEPTION(scope, JSValue()); // Call the [[Delete]] internal method of O with arguments indx and true. bool success = deletePropertyByIndex(this, exec, index); RETURN_IF_EXCEPTION(scope, JSValue()); if (!success) { throwTypeError(exec, scope, ASCIILiteral(UnableToDeletePropertyError)); return jsUndefined(); } // Call the [[Put]] internal method of O with arguments "length", indx, and true. scope.release(); setLength(exec, index, true); // Return element. return element; } // Push & putIndex are almost identical, with two small differences. // - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector. // - pushing to an array of length 2^32-1 stores the property, but throws a range error. void JSArray::push(ExecState* exec, JSValue value) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: { createInitialUndecided(vm, 0); FALLTHROUGH; } case ArrayWithUndecided: { convertUndecidedForValue(vm, value); scope.release(); push(exec, value); return; } case ArrayWithInt32: { if (!value.isInt32()) { convertInt32ForValue(vm, value); scope.release(); push(exec, value); return; } unsigned length = butterfly->publicLength(); ASSERT(length <= butterfly->vectorLength()); if (length < butterfly->vectorLength()) { butterfly->contiguousInt32()[length].setWithoutWriteBarrier(value); butterfly->setPublicLength(length + 1); return; } if (UNLIKELY(length > MAX_ARRAY_INDEX)) { methodTable(vm)->putByIndex(this, exec, length, value, true); if (!scope.exception()) throwException(exec, scope, createRangeError(exec, ASCIILiteral(LengthExceededTheMaximumArrayLengthError))); return; } scope.release(); putByIndexBeyondVectorLengthWithoutAttributes(exec, length, value); return; } case ArrayWithContiguous: { unsigned length = butterfly->publicLength(); ASSERT(length <= butterfly->vectorLength()); if (length < butterfly->vectorLength()) { butterfly->contiguous()[length].set(vm, this, value); butterfly->setPublicLength(length + 1); return; } if (UNLIKELY(length > MAX_ARRAY_INDEX)) { methodTable(vm)->putByIndex(this, exec, length, value, true); if (!scope.exception()) throwException(exec, scope, createRangeError(exec, ASCIILiteral(LengthExceededTheMaximumArrayLengthError))); return; } scope.release(); putByIndexBeyondVectorLengthWithoutAttributes(exec, length, value); return; } case ArrayWithDouble: { if (!value.isNumber()) { convertDoubleToContiguous(vm); scope.release(); push(exec, value); return; } double valueAsDouble = value.asNumber(); if (valueAsDouble != valueAsDouble) { convertDoubleToContiguous(vm); scope.release(); push(exec, value); return; } unsigned length = butterfly->publicLength(); ASSERT(length <= butterfly->vectorLength()); if (length < butterfly->vectorLength()) { butterfly->contiguousDouble()[length] = valueAsDouble; butterfly->setPublicLength(length + 1); return; } if (UNLIKELY(length > MAX_ARRAY_INDEX)) { methodTable(vm)->putByIndex(this, exec, length, value, true); if (!scope.exception()) throwException(exec, scope, createRangeError(exec, ASCIILiteral(LengthExceededTheMaximumArrayLengthError))); return; } scope.release(); putByIndexBeyondVectorLengthWithoutAttributes(exec, length, value); return; } case ArrayWithSlowPutArrayStorage: { unsigned oldLength = length(); bool putResult = false; if (attemptToInterceptPutByIndexOnHole(exec, oldLength, value, true, putResult)) { if (!scope.exception() && oldLength < 0xFFFFFFFFu) { scope.release(); setLength(exec, oldLength + 1, true); } return; } FALLTHROUGH; } case ArrayWithArrayStorage: { ArrayStorage* storage = butterfly->arrayStorage(); // Fast case - push within vector, always update m_length & m_numValuesInVector. unsigned length = storage->length(); if (length < storage->vectorLength()) { storage->m_vector[length].set(vm, this, value); storage->setLength(length + 1); ++storage->m_numValuesInVector; return; } // Pushing to an array of invalid length (2^31-1) stores the property, but throws a range error. if (UNLIKELY(storage->length() > MAX_ARRAY_INDEX)) { methodTable(vm)->putByIndex(this, exec, storage->length(), value, true); // Per ES5.1 15.4.4.7 step 6 & 15.4.5.1 step 3.d. if (!scope.exception()) throwException(exec, scope, createRangeError(exec, ASCIILiteral(LengthExceededTheMaximumArrayLengthError))); return; } // Handled the same as putIndex. scope.release(); putByIndexBeyondVectorLengthWithArrayStorage(exec, storage->length(), value, true, storage); return; } default: RELEASE_ASSERT_NOT_REACHED(); } } JSArray* JSArray::fastSlice(ExecState& exec, unsigned startIndex, unsigned count) { auto arrayType = indexingType(); switch (arrayType) { case ArrayWithDouble: case ArrayWithInt32: case ArrayWithContiguous: { VM& vm = exec.vm(); if (count >= MIN_SPARSE_ARRAY_INDEX || structure(vm)->holesMustForwardToPrototype(vm)) return nullptr; JSGlobalObject* lexicalGlobalObject = exec.lexicalGlobalObject(); Structure* resultStructure = lexicalGlobalObject->arrayStructureForIndexingTypeDuringAllocation(arrayType); if (UNLIKELY(hasAnyArrayStorage(resultStructure->indexingType()))) return nullptr; ASSERT(!lexicalGlobalObject->isHavingABadTime()); JSArray* resultArray = JSArray::tryCreateForInitializationPrivate(vm, resultStructure, count); if (UNLIKELY(!resultArray)) return nullptr; auto& resultButterfly = *resultArray->butterfly(); if (arrayType == ArrayWithDouble) memcpy(resultButterfly.contiguousDouble().data(), m_butterfly.get()->contiguousDouble().data() + startIndex, sizeof(JSValue) * count); else memcpy(resultButterfly.contiguous().data(), m_butterfly.get()->contiguous().data() + startIndex, sizeof(JSValue) * count); resultButterfly.setPublicLength(count); return resultArray; } default: return nullptr; } } bool JSArray::shiftCountWithArrayStorage(VM& vm, unsigned startIndex, unsigned count, ArrayStorage* storage) { unsigned oldLength = storage->length(); RELEASE_ASSERT(count <= oldLength); // If the array contains holes or is otherwise in an abnormal state, // use the generic algorithm in ArrayPrototype. if ((storage->hasHoles() && this->structure(vm)->holesMustForwardToPrototype(vm)) || hasSparseMap() || shouldUseSlowPut(indexingType())) { return false; } if (!oldLength) return true; unsigned length = oldLength - count; storage->m_numValuesInVector -= count; storage->setLength(length); unsigned vectorLength = storage->vectorLength(); if (!vectorLength) return true; if (startIndex >= vectorLength) return true; DisallowGC disallowGC; auto locker = holdLock(*this); if (startIndex + count > vectorLength) count = vectorLength - startIndex; unsigned usedVectorLength = min(vectorLength, oldLength); unsigned numElementsBeforeShiftRegion = startIndex; unsigned firstIndexAfterShiftRegion = startIndex + count; unsigned numElementsAfterShiftRegion = usedVectorLength - firstIndexAfterShiftRegion; ASSERT(numElementsBeforeShiftRegion + count + numElementsAfterShiftRegion == usedVectorLength); // The point of this comparison seems to be to minimize the amount of elements that have to // be moved during a shift operation. if (numElementsBeforeShiftRegion < numElementsAfterShiftRegion) { // The number of elements before the shift region is less than the number of elements // after the shift region, so we move the elements before to the right. if (numElementsBeforeShiftRegion) { RELEASE_ASSERT(count + startIndex <= vectorLength); if (storage->hasHoles()) { for (unsigned i = startIndex; i-- > 0;) { unsigned destinationIndex = count + i; JSValue source = storage->m_vector[i].get(); JSValue dest = storage->m_vector[destinationIndex].get(); // Any time we overwrite a hole we know we overcounted the number of values we removed // when we subtracted count from m_numValuesInVector above. if (!dest && destinationIndex >= firstIndexAfterShiftRegion) storage->m_numValuesInVector++; storage->m_vector[count + i].setWithoutWriteBarrier(source); } } else { memmove(storage->m_vector + count, storage->m_vector, sizeof(JSValue) * startIndex); } } // Adjust the Butterfly and the index bias. We only need to do this here because we're changing // the start of the Butterfly, which needs to point at the first indexed property in the used // portion of the vector. Butterfly* butterfly = m_butterfly.get()->shift(structure(), count); setButterfly(vm, butterfly); storage = butterfly->arrayStorage(); storage->m_indexBias += count; // Since we're consuming part of the vector by moving its beginning to the left, // we need to modify the vector length appropriately. storage->setVectorLength(vectorLength - count); } else { // The number of elements before the shift region is greater than or equal to the number // of elements after the shift region, so we move the elements after the shift region to the left. if (storage->hasHoles()) { for (unsigned i = 0; i < numElementsAfterShiftRegion; ++i) { unsigned destinationIndex = startIndex + i; JSValue source = storage->m_vector[firstIndexAfterShiftRegion + i].get(); JSValue dest = storage->m_vector[destinationIndex].get(); // Any time we overwrite a hole we know we overcounted the number of values we removed // when we subtracted count from m_numValuesInVector above. if (!dest && destinationIndex < firstIndexAfterShiftRegion) storage->m_numValuesInVector++; storage->m_vector[startIndex + i].setWithoutWriteBarrier(source); } } else { memmove(storage->m_vector + startIndex, storage->m_vector + firstIndexAfterShiftRegion, sizeof(JSValue) * numElementsAfterShiftRegion); } // Clear the slots of the elements we just moved. unsigned startOfEmptyVectorTail = usedVectorLength - count; for (unsigned i = startOfEmptyVectorTail; i < usedVectorLength; ++i) storage->m_vector[i].clear(); // We don't modify the index bias or the Butterfly pointer in this case because we're not changing // the start of the Butterfly, which needs to point at the first indexed property in the used // portion of the vector. We also don't modify the vector length because we're not actually changing // its length; we're just using less of it. } return true; } bool JSArray::shiftCountWithAnyIndexingType(ExecState* exec, unsigned& startIndex, unsigned count) { VM& vm = exec->vm(); RELEASE_ASSERT(count > 0); Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: return true; case ArrayWithUndecided: // Don't handle this because it's confusing and it shouldn't come up. return false; case ArrayWithInt32: case ArrayWithContiguous: { unsigned oldLength = butterfly->publicLength(); RELEASE_ASSERT(count <= oldLength); // We may have to walk the entire array to do the shift. We're willing to do // so only if it's not horribly slow. if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX) return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); // Storing to a hole is fine since we're still having a good time. But reading from a hole // is totally not fine, since we might have to read from the proto chain. // We have to check for holes before we start moving things around so that we don't get halfway // through shifting and then realize we should have been in ArrayStorage mode. unsigned end = oldLength - count; if (this->structure(vm)->holesMustForwardToPrototype(vm)) { for (unsigned i = startIndex; i < end; ++i) { JSValue v = butterfly->contiguous()[i + count].get(); if (UNLIKELY(!v)) { startIndex = i; return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); } butterfly->contiguous()[i].setWithoutWriteBarrier(v); } } else { memmove(butterfly->contiguous().data() + startIndex, butterfly->contiguous().data() + startIndex + count, sizeof(JSValue) * (end - startIndex)); } for (unsigned i = end; i < oldLength; ++i) butterfly->contiguous()[i].clear(); butterfly->setPublicLength(oldLength - count); // Our memmoving of values around in the array could have concealed some of them from // the collector. Let's make sure that the collector scans this object again. vm.heap.writeBarrier(this); return true; } case ArrayWithDouble: { unsigned oldLength = butterfly->publicLength(); RELEASE_ASSERT(count <= oldLength); // We may have to walk the entire array to do the shift. We're willing to do // so only if it's not horribly slow. if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX) return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); // Storing to a hole is fine since we're still having a good time. But reading from a hole // is totally not fine, since we might have to read from the proto chain. // We have to check for holes before we start moving things around so that we don't get halfway // through shifting and then realize we should have been in ArrayStorage mode. unsigned end = oldLength - count; if (this->structure(vm)->holesMustForwardToPrototype(vm)) { for (unsigned i = startIndex; i < end; ++i) { double v = butterfly->contiguousDouble()[i + count]; if (UNLIKELY(v != v)) { startIndex = i; return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); } butterfly->contiguousDouble()[i] = v; } } else { memmove(butterfly->contiguousDouble().data() + startIndex, butterfly->contiguousDouble().data() + startIndex + count, sizeof(JSValue) * (end - startIndex)); } for (unsigned i = end; i < oldLength; ++i) butterfly->contiguousDouble()[i] = PNaN; butterfly->setPublicLength(oldLength - count); return true; } case ArrayWithArrayStorage: case ArrayWithSlowPutArrayStorage: return shiftCountWithArrayStorage(vm, startIndex, count, arrayStorage()); default: CRASH(); return false; } } // Returns true if the unshift can be handled, false to fallback. bool JSArray::unshiftCountWithArrayStorage(ExecState* exec, unsigned startIndex, unsigned count, ArrayStorage* storage) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); unsigned length = storage->length(); RELEASE_ASSERT(startIndex <= length); // If the array contains holes or is otherwise in an abnormal state, // use the generic algorithm in ArrayPrototype. if (storage->hasHoles() || storage->inSparseMode() || shouldUseSlowPut(indexingType())) return false; bool moveFront = !startIndex || startIndex < length / 2; unsigned vectorLength = storage->vectorLength(); // Need to have GC deferred around the unshiftCountSlowCase(), since that leaves the butterfly in // a weird state: some parts of it will be left uninitialized, which we will fill in here. DeferGC deferGC(vm.heap); auto locker = holdLock(*this); if (moveFront && storage->m_indexBias >= count) { Butterfly* newButterfly = storage->butterfly()->unshift(structure(), count); storage = newButterfly->arrayStorage(); storage->m_indexBias -= count; storage->setVectorLength(vectorLength + count); setButterfly(vm, newButterfly); } else if (!moveFront && vectorLength - length >= count) storage = storage->butterfly()->arrayStorage(); else if (unshiftCountSlowCase(locker, vm, deferGC, moveFront, count)) storage = arrayStorage(); else { throwOutOfMemoryError(exec, scope); return true; } WriteBarrier* vector = storage->m_vector; if (startIndex) { if (moveFront) memmove(vector, vector + count, startIndex * sizeof(JSValue)); else if (length - startIndex) memmove(vector + startIndex + count, vector + startIndex, (length - startIndex) * sizeof(JSValue)); } for (unsigned i = 0; i < count; i++) vector[i + startIndex].clear(); return true; } bool JSArray::unshiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: case ArrayWithUndecided: // We could handle this. But it shouldn't ever come up, so we won't. return false; case ArrayWithInt32: case ArrayWithContiguous: { unsigned oldLength = butterfly->publicLength(); // We may have to walk the entire array to do the unshift. We're willing to do so // only if it's not horribly slow. if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX) { scope.release(); return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm)); } if (!ensureLength(vm, oldLength + count)) { throwOutOfMemoryError(exec, scope); return false; } butterfly = m_butterfly.get(); // We have to check for holes before we start moving things around so that we don't get halfway // through shifting and then realize we should have been in ArrayStorage mode. for (unsigned i = oldLength; i-- > startIndex;) { JSValue v = butterfly->contiguous()[i].get(); if (UNLIKELY(!v)) { scope.release(); return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm)); } } for (unsigned i = oldLength; i-- > startIndex;) { JSValue v = butterfly->contiguous()[i].get(); ASSERT(v); butterfly->contiguous()[i + count].setWithoutWriteBarrier(v); } // Our memmoving of values around in the array could have concealed some of them from // the collector. Let's make sure that the collector scans this object again. vm.heap.writeBarrier(this); // NOTE: we're leaving being garbage in the part of the array that we shifted out // of. This is fine because the caller is required to store over that area, and // in contiguous mode storing into a hole is guaranteed to behave exactly the same // as storing over an existing element. return true; } case ArrayWithDouble: { unsigned oldLength = butterfly->publicLength(); // We may have to walk the entire array to do the unshift. We're willing to do so // only if it's not horribly slow. if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX) { scope.release(); return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm)); } if (!ensureLength(vm, oldLength + count)) { throwOutOfMemoryError(exec, scope); return false; } butterfly = m_butterfly.get(); // We have to check for holes before we start moving things around so that we don't get halfway // through shifting and then realize we should have been in ArrayStorage mode. for (unsigned i = oldLength; i-- > startIndex;) { double v = butterfly->contiguousDouble()[i]; if (UNLIKELY(v != v)) { scope.release(); return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm)); } } for (unsigned i = oldLength; i-- > startIndex;) { double v = butterfly->contiguousDouble()[i]; ASSERT(v == v); butterfly->contiguousDouble()[i + count] = v; } // NOTE: we're leaving being garbage in the part of the array that we shifted out // of. This is fine because the caller is required to store over that area, and // in contiguous mode storing into a hole is guaranteed to behave exactly the same // as storing over an existing element. return true; } case ArrayWithArrayStorage: case ArrayWithSlowPutArrayStorage: scope.release(); return unshiftCountWithArrayStorage(exec, startIndex, count, arrayStorage()); default: CRASH(); return false; } } void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args) { unsigned i = 0; unsigned vectorEnd; WriteBarrier* vector; Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: return; case ArrayWithUndecided: { vector = 0; vectorEnd = 0; break; } case ArrayWithInt32: case ArrayWithContiguous: { vectorEnd = butterfly->publicLength(); vector = butterfly->contiguous().data(); break; } case ArrayWithDouble: { vector = 0; vectorEnd = 0; for (; i < butterfly->publicLength(); ++i) { double v = butterfly->contiguousDouble()[i]; if (v != v) break; args.append(JSValue(JSValue::EncodeAsDouble, v)); } break; } case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { ArrayStorage* storage = butterfly->arrayStorage(); vector = storage->m_vector; vectorEnd = min(storage->length(), storage->vectorLength()); break; } default: CRASH(); #if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) vector = 0; vectorEnd = 0; break; #endif } for (; i < vectorEnd; ++i) { WriteBarrier& v = vector[i]; if (!v) break; args.append(v.get()); } // FIXME: What prevents this from being called with a RuntimeArray? The length function will always return 0 in that case. for (; i < length(); ++i) args.append(get(exec, i)); } void JSArray::copyToArguments(ExecState* exec, VirtualRegister firstElementDest, unsigned offset, unsigned length) { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); unsigned i = offset; WriteBarrier* vector; unsigned vectorEnd; length += offset; // We like to think of the length as being our length, rather than the output length. // FIXME: What prevents this from being called with a RuntimeArray? The length function will always return 0 in that case. ASSERT(length == this->length()); Butterfly* butterfly = m_butterfly.get(); switch (indexingType()) { case ArrayClass: return; case ArrayWithUndecided: { vector = 0; vectorEnd = 0; break; } case ArrayWithInt32: case ArrayWithContiguous: { vector = butterfly->contiguous().data(); vectorEnd = butterfly->publicLength(); break; } case ArrayWithDouble: { vector = 0; vectorEnd = 0; for (; i < butterfly->publicLength(); ++i) { ASSERT(i < butterfly->vectorLength()); double v = butterfly->contiguousDouble()[i]; if (v != v) break; exec->r(firstElementDest + i - offset) = JSValue(JSValue::EncodeAsDouble, v); } break; } case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { ArrayStorage* storage = butterfly->arrayStorage(); vector = storage->m_vector; vectorEnd = min(length, storage->vectorLength()); break; } default: CRASH(); #if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) vector = 0; vectorEnd = 0; break; #endif } for (; i < vectorEnd; ++i) { WriteBarrier& v = vector[i]; if (!v) break; exec->r(firstElementDest + i - offset) = v.get(); } for (; i < length; ++i) { exec->r(firstElementDest + i - offset) = get(exec, i); RETURN_IF_EXCEPTION(scope, void()); } } } // namespace JSC