/* * Copyright (C) 2016-2017 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include "JSCell.h" #include "MarkedAllocator.h" #include "MarkedBlock.h" #include "MarkedSpace.h" #include "Operations.h" #include "SuperSampler.h" #include "VM.h" namespace JSC { inline unsigned MarkedBlock::Handle::cellsPerBlock() { return MarkedSpace::blockPayload / cellSize(); } inline bool MarkedBlock::Handle::isNewlyAllocatedStale() const { return m_newlyAllocatedVersion != space()->newlyAllocatedVersion(); } inline bool MarkedBlock::Handle::hasAnyNewlyAllocated() { return !isNewlyAllocatedStale(); } inline Heap* MarkedBlock::heap() const { return &vm()->heap; } inline MarkedSpace* MarkedBlock::space() const { return &heap()->objectSpace(); } inline MarkedSpace* MarkedBlock::Handle::space() const { return &heap()->objectSpace(); } inline bool MarkedBlock::marksConveyLivenessDuringMarking(HeapVersion markingVersion) { // This returns true if any of these is true: // - We just created the block and so the bits are clear already. // - This block has objects marked during the last GC, and so its version was up-to-date just // before the current collection did beginMarking(). This means that any objects that have // their mark bit set are valid objects that were never deleted, and so are candidates for // marking in any conservative scan. Using our jargon, they are "live". // - We did ~2^32 collections and rotated the version back to null, so we needed to hard-reset // everything. If the marks had been stale, we would have cleared them. So, we can be sure that // any set mark bit reflects objects marked during last GC, i.e. "live" objects. // It would be absurd to use this method when not collecting, since this special "one version // back" state only makes sense when we're in a concurrent collection and have to be // conservative. ASSERT(space()->isMarking()); if (heap()->collectionScope() != CollectionScope::Full) return false; return m_markingVersion == MarkedSpace::nullVersion || MarkedSpace::nextVersion(m_markingVersion) == markingVersion; } inline bool MarkedBlock::Handle::isLive(HeapVersion markingVersion, bool isMarking, const HeapCell* cell) { ASSERT(!isFreeListed()); if (UNLIKELY(hasAnyNewlyAllocated())) { if (isNewlyAllocated(cell)) return true; } if (allocator()->isAllocated(NoLockingNecessary, this)) return true; MarkedBlock& block = this->block(); if (block.areMarksStale()) { if (!isMarking) return false; if (!block.marksConveyLivenessDuringMarking(markingVersion)) return false; } return block.m_marks.get(block.atomNumber(cell)); } inline bool MarkedBlock::Handle::isLiveCell(HeapVersion markingVersion, bool isMarking, const void* p) { if (!m_block->isAtom(p)) return false; return isLive(markingVersion, isMarking, static_cast(p)); } // The following has to be true for specialization to kick in: // // sweepMode == SweepToFreeList // scribbleMode == DontScribble // newlyAllocatedMode == DoesNotHaveNewlyAllocated // destructionMode != BlockHasDestrictorsAndCollectorIsRunning // // emptyMode = IsEmpty // destructionMode = DoesNotNeedDestruction // marksMode = MarksNotStale (1) // marksMode = MarksStale (2) // emptyMode = NotEmpty // destructionMode = DoesNotNeedDestruction // marksMode = MarksNotStale (3) // marksMode = MarksStale (4) // destructionMode = NeedsDestruction // marksMode = MarksNotStale (5) // marksMode = MarksStale (6) // // Only the DoesNotNeedDestruction one should be specialized by MarkedBlock. template FreeList MarkedBlock::Handle::specializedSweep(MarkedBlock::Handle::EmptyMode emptyMode, MarkedBlock::Handle::SweepMode sweepMode, MarkedBlock::Handle::SweepDestructionMode destructionMode, MarkedBlock::Handle::ScribbleMode scribbleMode, MarkedBlock::Handle::NewlyAllocatedMode newlyAllocatedMode, MarkedBlock::Handle::MarksMode marksMode, const DestroyFunc& destroyFunc) { if (specialize) { emptyMode = specializedEmptyMode; sweepMode = specializedSweepMode; destructionMode = specializedDestructionMode; scribbleMode = specializedScribbleMode; newlyAllocatedMode = specializedNewlyAllocatedMode; marksMode = specializedMarksMode; } RELEASE_ASSERT(!(destructionMode == BlockHasNoDestructors && sweepMode == SweepOnly)); SuperSamplerScope superSamplerScope(false); MarkedBlock& block = this->block(); if (false) dataLog(RawPointer(this), "/", RawPointer(&block), ": MarkedBlock::Handle::specializedSweep!\n"); if (Options::useBumpAllocator() && emptyMode == IsEmpty && newlyAllocatedMode == DoesNotHaveNewlyAllocated) { // This is an incredibly powerful assertion that checks the sanity of our block bits. if (marksMode == MarksNotStale && !block.m_marks.isEmpty()) { WTF::dataFile().atomically( [&] (PrintStream& out) { out.print("Block ", RawPointer(&block), ": marks not empty!\n"); out.print("Block lock is held: ", block.m_lock.isHeld(), "\n"); out.print("Marking version of block: ", block.m_markingVersion, "\n"); out.print("Marking version of heap: ", space()->markingVersion(), "\n"); UNREACHABLE_FOR_PLATFORM(); }); } char* startOfLastCell = static_cast(cellAlign(block.atoms() + m_endAtom - 1)); char* payloadEnd = startOfLastCell + cellSize(); RELEASE_ASSERT(payloadEnd - MarkedBlock::blockSize <= bitwise_cast(&block)); char* payloadBegin = bitwise_cast(block.atoms() + firstAtom()); if (scribbleMode == Scribble) scribble(payloadBegin, payloadEnd - payloadBegin); if (sweepMode == SweepToFreeList) setIsFreeListed(); else m_allocator->setIsEmpty(NoLockingNecessary, this, true); if (space()->isMarking()) block.m_lock.unlock(); FreeList result = FreeList::bump(payloadEnd, payloadEnd - payloadBegin); if (false) dataLog("Quickly swept block ", RawPointer(this), " with cell size ", cellSize(), " and attributes ", m_attributes, ": ", result, "\n"); return result; } // This produces a free list that is ordered in reverse through the block. // This is fine, since the allocation code makes no assumptions about the // order of the free list. FreeCell* head = 0; size_t count = 0; bool isEmpty = true; Vector deadCells; VM& vm = *this->vm(); auto handleDeadCell = [&] (size_t i) { HeapCell* cell = reinterpret_cast_ptr(&block.atoms()[i]); if (destructionMode != BlockHasNoDestructors && emptyMode == NotEmpty) { JSCell* jsCell = static_cast(cell); if (!jsCell->isZapped()) { destroyFunc(vm, jsCell); jsCell->zap(); } } if (sweepMode == SweepToFreeList) { FreeCell* freeCell = reinterpret_cast_ptr(cell); if (scribbleMode == Scribble) scribble(freeCell, cellSize()); freeCell->next = head; head = freeCell; ++count; } }; for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { if (emptyMode == NotEmpty && ((marksMode == MarksNotStale && block.m_marks.get(i)) || (newlyAllocatedMode == HasNewlyAllocated && m_newlyAllocated.get(i)))) { isEmpty = false; continue; } if (destructionMode == BlockHasDestructorsAndCollectorIsRunning) deadCells.append(i); else handleDeadCell(i); } // We only want to discard the newlyAllocated bits if we're creating a FreeList, // otherwise we would lose information on what's currently alive. if (sweepMode == SweepToFreeList && newlyAllocatedMode == HasNewlyAllocated) m_newlyAllocatedVersion = MarkedSpace::nullVersion; if (space()->isMarking()) block.m_lock.unlock(); if (destructionMode == BlockHasDestructorsAndCollectorIsRunning) { for (size_t i : deadCells) handleDeadCell(i); } FreeList result = FreeList::list(head, count * cellSize()); if (sweepMode == SweepToFreeList) setIsFreeListed(); else if (isEmpty) m_allocator->setIsEmpty(NoLockingNecessary, this, true); if (false) dataLog("Slowly swept block ", RawPointer(&block), " with cell size ", cellSize(), " and attributes ", m_attributes, ": ", result, "\n"); return result; } template FreeList MarkedBlock::Handle::finishSweepKnowingSubspace(SweepMode sweepMode, const DestroyFunc& destroyFunc) { SweepDestructionMode destructionMode = this->sweepDestructionMode(); EmptyMode emptyMode = this->emptyMode(); ScribbleMode scribbleMode = this->scribbleMode(); NewlyAllocatedMode newlyAllocatedMode = this->newlyAllocatedMode(); MarksMode marksMode = this->marksMode(); FreeList result; auto trySpecialized = [&] () -> bool { if (sweepMode != SweepToFreeList) return false; if (scribbleMode != DontScribble) return false; if (newlyAllocatedMode != DoesNotHaveNewlyAllocated) return false; if (destructionMode != BlockHasDestructors) return false; if (emptyMode == IsEmpty) return false; switch (marksMode) { case MarksNotStale: result = specializedSweep(IsEmpty, SweepToFreeList, BlockHasDestructors, DontScribble, DoesNotHaveNewlyAllocated, MarksNotStale, destroyFunc); return true; case MarksStale: result = specializedSweep(IsEmpty, SweepToFreeList, BlockHasDestructors, DontScribble, DoesNotHaveNewlyAllocated, MarksStale, destroyFunc); return true; } return false; }; if (trySpecialized()) return result; // The template arguments don't matter because the first one is false. return specializedSweep(emptyMode, sweepMode, destructionMode, scribbleMode, newlyAllocatedMode, marksMode, destroyFunc); } inline MarkedBlock::Handle::SweepDestructionMode MarkedBlock::Handle::sweepDestructionMode() { if (m_attributes.destruction == NeedsDestruction) { if (space()->isMarking()) return BlockHasDestructorsAndCollectorIsRunning; return BlockHasDestructors; } return BlockHasNoDestructors; } inline MarkedBlock::Handle::EmptyMode MarkedBlock::Handle::emptyMode() { // It's not obvious, but this is the only way to know if the block is empty. It's the only // bit that captures these caveats: // - It's true when the block is freshly allocated. // - It's true if the block had been swept in the past, all destructors were called, and that // sweep proved that the block is empty. // - It's false if there are any destructors that need to be called, even if the block has no // live objects. return m_allocator->isEmpty(NoLockingNecessary, this) ? IsEmpty : NotEmpty; } inline MarkedBlock::Handle::ScribbleMode MarkedBlock::Handle::scribbleMode() { return scribbleFreeCells() ? Scribble : DontScribble; } inline MarkedBlock::Handle::NewlyAllocatedMode MarkedBlock::Handle::newlyAllocatedMode() { return hasAnyNewlyAllocated() ? HasNewlyAllocated : DoesNotHaveNewlyAllocated; } inline MarkedBlock::Handle::MarksMode MarkedBlock::Handle::marksMode() { HeapVersion markingVersion = space()->markingVersion(); bool marksAreUseful = !block().areMarksStale(markingVersion); if (space()->isMarking()) marksAreUseful |= block().marksConveyLivenessDuringMarking(markingVersion); return marksAreUseful ? MarksNotStale : MarksStale; } template inline IterationStatus MarkedBlock::Handle::forEachLiveCell(const Functor& functor) { HeapCell::Kind kind = m_attributes.cellKind; for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { HeapCell* cell = reinterpret_cast_ptr(&m_block->atoms()[i]); if (!isLive(cell)) continue; if (functor(cell, kind) == IterationStatus::Done) return IterationStatus::Done; } return IterationStatus::Continue; } template inline IterationStatus MarkedBlock::Handle::forEachDeadCell(const Functor& functor) { HeapCell::Kind kind = m_attributes.cellKind; for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { HeapCell* cell = reinterpret_cast_ptr(&m_block->atoms()[i]); if (isLive(cell)) continue; if (functor(cell, kind) == IterationStatus::Done) return IterationStatus::Done; } return IterationStatus::Continue; } template inline IterationStatus MarkedBlock::Handle::forEachMarkedCell(const Functor& functor) { HeapCell::Kind kind = m_attributes.cellKind; MarkedBlock& block = this->block(); bool areMarksStale = block.areMarksStale(); WTF::loadLoadFence(); if (areMarksStale) return IterationStatus::Continue; for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { HeapCell* cell = reinterpret_cast_ptr(&m_block->atoms()[i]); if (!block.isMarkedRaw(cell)) continue; if (functor(cell, kind) == IterationStatus::Done) return IterationStatus::Done; } return IterationStatus::Continue; } } // namespace JSC