/* * Copyright (C) 2015-2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #if ENABLE(B3_JIT) #include "AirArg.h" #include "B3Effects.h" #include "B3FrequentedBlock.h" #include "B3Kind.h" #include "B3Origin.h" #include "B3SparseCollection.h" #include "B3Type.h" #include "B3ValueKey.h" #include #include #include namespace JSC { namespace B3 { class BasicBlock; class CheckValue; class InsertionSet; class PhiChildren; class Procedure; class JS_EXPORT_PRIVATE Value { WTF_MAKE_FAST_ALLOCATED; public: typedef Vector AdjacencyList; static const char* const dumpPrefix; static bool accepts(Kind) { return true; } virtual ~Value(); unsigned index() const { return m_index; } // Note that the kind is immutable, except for replacing values with: // Identity, Nop, Oops, Jump, and Phi. See below for replaceWithXXX() methods. Kind kind() const { return m_kind; } Opcode opcode() const { return kind().opcode(); } // It's good practice to mirror Kind methods here, so you can say value->isBlah() // instead of value->kind().isBlah(). bool isChill() const { return kind().isChill(); } bool traps() const { return kind().traps(); } Origin origin() const { return m_origin; } void setOrigin(Origin origin) { m_origin = origin; } Value*& child(unsigned index) { return m_children[index]; } Value* child(unsigned index) const { return m_children[index]; } Value*& lastChild() { return m_children.last(); } Value* lastChild() const { return m_children.last(); } unsigned numChildren() const { return m_children.size(); } Type type() const { return m_type; } void setType(Type type) { m_type = type; } // This is useful when lowering. Note that this is only valid for non-void values. Air::Arg::Type airType() const { return Air::Arg::typeForB3Type(type()); } Air::Arg::Width airWidth() const { return Air::Arg::widthForB3Type(type()); } AdjacencyList& children() { return m_children; } const AdjacencyList& children() const { return m_children; } // If you want to replace all uses of this value with a different value, then replace this // value with Identity. Then do a pass of performSubstitution() on all of the values that use // this one. Usually we do all of this in one pass in pre-order, which ensures that the // X->replaceWithIdentity() calls happen before the performSubstitution() calls on X's users. void replaceWithIdentity(Value*); // It's often necessary to kill a value. It's tempting to replace the value with Nop or to // just remove it. But unless you are sure that the value is Void, you will probably still // have other values that use this one. Sure, you may kill those later, or you might not. This // method lets you kill a value safely. It will replace Void values with Nop and non-Void // values with Identities on bottom constants. For this reason, this takes a callback that is // responsible for creating bottoms. There's a utility for this, see B3BottomProvider.h. You // can also access that utility using replaceWithBottom(InsertionSet&, size_t). template void replaceWithBottom(const BottomProvider&); void replaceWithBottom(InsertionSet&, size_t index); // Use this if you want to kill a value and you are sure that the value is Void. void replaceWithNop(); // Use this if you want to kill a value and you are sure that nobody is using it anymore. void replaceWithNopIgnoringType(); void replaceWithPhi(); // These transformations are only valid for terminals. void replaceWithJump(BasicBlock* owner, FrequentedBlock); void replaceWithOops(BasicBlock* owner); // You can use this form if owners are valid. They're usually not valid. void replaceWithJump(FrequentedBlock); void replaceWithOops(); void dump(PrintStream&) const; void deepDump(const Procedure*, PrintStream&) const; virtual void dumpSuccessors(const BasicBlock*, PrintStream&) const; // This is how you cast Values. For example, if you want to do something provided that we have a // ArgumentRegValue, you can do: // // if (ArgumentRegValue* argumentReg = value->as()) { // things // } // // This will return null if this kind() != ArgumentReg. This works because this returns nullptr // if T::accepts(kind()) returns false. template T* as(); template const T* as() const; // What follows are a bunch of helpers for inspecting and modifying values. Note that we have a // bunch of different idioms for implementing such helpers. You can use virtual methods, and // override from the various Value subclasses. You can put the method inside Value and make it // non-virtual, and the implementation can switch on kind. The method could be inline or not. // If a method is specific to some Value subclass, you could put it in the subclass, or you could // put it on Value anyway. It's fine to pick whatever feels right, and we shouldn't restrict // ourselves to any particular idiom. bool isConstant() const; bool isInteger() const; virtual Value* negConstant(Procedure&) const; virtual Value* addConstant(Procedure&, int32_t other) const; virtual Value* addConstant(Procedure&, const Value* other) const; virtual Value* subConstant(Procedure&, const Value* other) const; virtual Value* mulConstant(Procedure&, const Value* other) const; virtual Value* checkAddConstant(Procedure&, const Value* other) const; virtual Value* checkSubConstant(Procedure&, const Value* other) const; virtual Value* checkMulConstant(Procedure&, const Value* other) const; virtual Value* checkNegConstant(Procedure&) const; virtual Value* divConstant(Procedure&, const Value* other) const; // This chooses Div semantics for integers. virtual Value* uDivConstant(Procedure&, const Value* other) const; virtual Value* modConstant(Procedure&, const Value* other) const; // This chooses Mod semantics. virtual Value* uModConstant(Procedure&, const Value* other) const; virtual Value* bitAndConstant(Procedure&, const Value* other) const; virtual Value* bitOrConstant(Procedure&, const Value* other) const; virtual Value* bitXorConstant(Procedure&, const Value* other) const; virtual Value* shlConstant(Procedure&, const Value* other) const; virtual Value* sShrConstant(Procedure&, const Value* other) const; virtual Value* zShrConstant(Procedure&, const Value* other) const; virtual Value* rotRConstant(Procedure&, const Value* other) const; virtual Value* rotLConstant(Procedure&, const Value* other) const; virtual Value* bitwiseCastConstant(Procedure&) const; virtual Value* iToDConstant(Procedure&) const; virtual Value* iToFConstant(Procedure&) const; virtual Value* doubleToFloatConstant(Procedure&) const; virtual Value* floatToDoubleConstant(Procedure&) const; virtual Value* absConstant(Procedure&) const; virtual Value* ceilConstant(Procedure&) const; virtual Value* floorConstant(Procedure&) const; virtual Value* sqrtConstant(Procedure&) const; virtual TriState equalConstant(const Value* other) const; virtual TriState notEqualConstant(const Value* other) const; virtual TriState lessThanConstant(const Value* other) const; virtual TriState greaterThanConstant(const Value* other) const; virtual TriState lessEqualConstant(const Value* other) const; virtual TriState greaterEqualConstant(const Value* other) const; virtual TriState aboveConstant(const Value* other) const; virtual TriState belowConstant(const Value* other) const; virtual TriState aboveEqualConstant(const Value* other) const; virtual TriState belowEqualConstant(const Value* other) const; virtual TriState equalOrUnorderedConstant(const Value* other) const; // If the value is a comparison then this returns the inverted form of that comparison, if // possible. It can be impossible for double comparisons, where for example LessThan and // GreaterEqual behave differently. If this returns a value, it is a new value, which must be // either inserted into some block or deleted. Value* invertedCompare(Procedure&) const; bool hasInt32() const; int32_t asInt32() const; bool isInt32(int32_t) const; bool hasInt64() const; int64_t asInt64() const; bool isInt64(int64_t) const; bool hasInt() const; int64_t asInt() const; bool isInt(int64_t value) const; bool hasIntPtr() const; intptr_t asIntPtr() const; bool isIntPtr(intptr_t) const; bool hasDouble() const; double asDouble() const; bool isEqualToDouble(double) const; // We say "isEqualToDouble" because "isDouble" would be a bit equality. bool hasFloat() const; float asFloat() const; bool hasNumber() const; template bool isRepresentableAs() const; template T asNumber() const; // Booleans in B3 are Const32(0) or Const32(1). So this is true if the type is Int32 and the only // possible return values are 0 or 1. It's OK for this method to conservatively return false. bool returnsBool() const; bool isNegativeZero() const; bool isRounded() const; TriState asTriState() const; bool isLikeZero() const { return asTriState() == FalseTriState; } bool isLikeNonZero() const { return asTriState() == TrueTriState; } Effects effects() const; // This returns a ValueKey that describes that this Value returns when it executes. Returns an // empty ValueKey if this Value is impure. Note that an operation that returns Void could still // have a non-empty ValueKey. This happens for example with Check operations. ValueKey key() const; // Makes sure that none of the children are Identity's. If a child points to Identity, this will // repoint it at the Identity's child. For simplicity, this will follow arbitrarily long chains // of Identity's. void performSubstitution(); // Free values are those whose presence is guaranteed not to hurt code. We consider constants, // Identities, and Nops to be free. Constants are free because we hoist them to an optimal place. // Identities and Nops are free because we remove them. bool isFree() const; // Walk the ancestors of this value (i.e. the graph of things it transitively uses). This // either walks phis or not, depending on whether PhiChildren is null. Your callback gets // called with the signature: // // (Value*) -> WalkStatus enum WalkStatus { Continue, IgnoreChildren, Stop }; template void walk(const Functor& functor, PhiChildren* = nullptr); protected: virtual Value* cloneImpl() const; virtual void dumpChildren(CommaPrinter&, PrintStream&) const; virtual void dumpMeta(CommaPrinter&, PrintStream&) const; private: friend class Procedure; friend class SparseCollection; // Checks that this kind is valid for use with B3::Value. ALWAYS_INLINE static void checkKind(Kind kind, unsigned numArgs) { switch (kind.opcode()) { case FramePointer: case Nop: case Phi: case Jump: case Oops: case EntrySwitch: if (UNLIKELY(numArgs)) badKind(kind, numArgs); break; case Return: if (UNLIKELY(numArgs > 1)) badKind(kind, numArgs); break; case Identity: case Neg: case Clz: case Abs: case Ceil: case Floor: case Sqrt: case SExt8: case SExt16: case Trunc: case SExt32: case ZExt32: case FloatToDouble: case IToD: case DoubleToFloat: case IToF: case BitwiseCast: case Branch: if (UNLIKELY(numArgs != 1)) badKind(kind, numArgs); break; case Add: case Sub: case Mul: case Div: case UDiv: case Mod: case UMod: case BitAnd: case BitOr: case BitXor: case Shl: case SShr: case ZShr: case RotR: case RotL: case Equal: case NotEqual: case LessThan: case GreaterThan: case LessEqual: case GreaterEqual: case Above: case Below: case AboveEqual: case BelowEqual: case EqualOrUnordered: if (UNLIKELY(numArgs != 2)) badKind(kind, numArgs); break; case Select: if (UNLIKELY(numArgs != 3)) badKind(kind, numArgs); break; default: badKind(kind, numArgs); break; } } protected: enum CheckedOpcodeTag { CheckedOpcode }; Value(const Value&) = default; Value& operator=(const Value&) = default; // Instantiate values via Procedure. // This form requires specifying the type explicitly: template explicit Value(CheckedOpcodeTag, Kind kind, Type type, Origin origin, Value* firstChild, Arguments... arguments) : m_kind(kind) , m_type(type) , m_origin(origin) , m_children{ firstChild, arguments... } { } // This form is for specifying the type explicitly when the opcode has no children: explicit Value(CheckedOpcodeTag, Kind kind, Type type, Origin origin) : m_kind(kind) , m_type(type) , m_origin(origin) { } // This form is for those opcodes that can infer their type from the opcode and first child: template explicit Value(CheckedOpcodeTag, Kind kind, Origin origin, Value* firstChild) : m_kind(kind) , m_type(typeFor(kind, firstChild)) , m_origin(origin) , m_children{ firstChild } { } // This form is for those opcodes that can infer their type from the opcode and first and second child: template explicit Value(CheckedOpcodeTag, Kind kind, Origin origin, Value* firstChild, Value* secondChild, Arguments... arguments) : m_kind(kind) , m_type(typeFor(kind, firstChild, secondChild)) , m_origin(origin) , m_children{ firstChild, secondChild, arguments... } { } // This form is for those opcodes that can infer their type from the opcode alone, and that don't // take any arguments: explicit Value(CheckedOpcodeTag, Kind kind, Origin origin) : m_kind(kind) , m_type(typeFor(kind, nullptr)) , m_origin(origin) { } // Use this form for varargs. explicit Value(CheckedOpcodeTag, Kind kind, Type type, Origin origin, const AdjacencyList& children) : m_kind(kind) , m_type(type) , m_origin(origin) , m_children(children) { } explicit Value(CheckedOpcodeTag, Kind kind, Type type, Origin origin, AdjacencyList&& children) : m_kind(kind) , m_type(type) , m_origin(origin) , m_children(WTFMove(children)) { } // This is the constructor you end up actually calling, if you're instantiating Value // directly. template explicit Value(Kind kind, Type type, Origin origin) : Value(CheckedOpcode, kind, type, origin) { checkKind(kind, 0); } template explicit Value(Kind kind, Type type, Origin origin, Value* firstChild, Arguments&&... arguments) : Value(CheckedOpcode, kind, type, origin, firstChild, std::forward(arguments)...) { checkKind(kind, 1 + sizeof...(arguments)); } template explicit Value(Kind kind, Type type, Origin origin, const AdjacencyList& children) : Value(CheckedOpcode, kind, type, origin, children) { checkKind(kind, children.size()); } template explicit Value(Kind kind, Type type, Origin origin, AdjacencyList&& children) : Value(CheckedOpcode, kind, type, origin, WTFMove(children)) { checkKind(kind, m_children.size()); } template explicit Value(Kind kind, Origin origin, Arguments&&... arguments) : Value(CheckedOpcode, kind, origin, std::forward(arguments)...) { checkKind(kind, sizeof...(arguments)); } private: friend class CheckValue; // CheckValue::convertToAdd() modifies m_kind. static Type typeFor(Kind, Value* firstChild, Value* secondChild = nullptr); // This group of fields is arranged to fit in 64 bits. protected: unsigned m_index { UINT_MAX }; private: Kind m_kind; Type m_type; Origin m_origin; AdjacencyList m_children; JS_EXPORT_PRIVATE NO_RETURN_DUE_TO_CRASH static void badKind(Kind, unsigned); public: BasicBlock* owner { nullptr }; // computed by Procedure::resetValueOwners(). }; class DeepValueDump { public: DeepValueDump(const Procedure* proc, const Value* value) : m_proc(proc) , m_value(value) { } void dump(PrintStream& out) const { if (m_value) m_value->deepDump(m_proc, out); else out.print(""); } private: const Procedure* m_proc; const Value* m_value; }; inline DeepValueDump deepDump(const Procedure& proc, const Value* value) { return DeepValueDump(&proc, value); } inline DeepValueDump deepDump(const Value* value) { return DeepValueDump(nullptr, value); } } } // namespace JSC::B3 #endif // ENABLE(B3_JIT)