/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */ /* NetworkManager -- Network link manager * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Copyright 2004 - 2014 Red Hat, Inc. * Copyright 2005 - 2008 Novell, Inc. */ #include "nm-default.h" #include "nm-core-utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "nm-utils/nm-random-utils.h" #include "nm-utils.h" #include "nm-core-internal.h" #include "nm-setting-connection.h" #include "nm-setting-ip4-config.h" #include "nm-setting-ip6-config.h" #include "nm-setting-wireless.h" #include "nm-setting-wireless-security.h" /* * Some toolchains (E.G. uClibc 0.9.33 and earlier) don't export * CLOCK_BOOTTIME even though the kernel supports it, so provide a * local definition */ #ifndef CLOCK_BOOTTIME #define CLOCK_BOOTTIME 7 #endif G_STATIC_ASSERT (sizeof (NMUtilsTestFlags) <= sizeof (int)); static int _nm_utils_testing = 0; gboolean nm_utils_get_testing_initialized () { NMUtilsTestFlags flags; flags = (NMUtilsTestFlags) _nm_utils_testing; if (flags == NM_UTILS_TEST_NONE) flags = (NMUtilsTestFlags) g_atomic_int_get (&_nm_utils_testing); return flags != NM_UTILS_TEST_NONE; } NMUtilsTestFlags nm_utils_get_testing () { NMUtilsTestFlags flags; flags = (NMUtilsTestFlags) _nm_utils_testing; if (flags != NM_UTILS_TEST_NONE) { /* Flags already initialized. Return them. */ return flags & NM_UTILS_TEST_ALL; } /* Accessing nm_utils_get_testing() causes us to set the flags to initialized. * Detecting running tests also based on g_test_initialized(). */ flags = _NM_UTILS_TEST_INITIALIZED; if (g_test_initialized ()) flags |= _NM_UTILS_TEST_GENERAL; if (g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) { /* Done. We set it. */ return flags & NM_UTILS_TEST_ALL; } /* It changed in the meantime (??). Re-read the value. */ return ((NMUtilsTestFlags) _nm_utils_testing) & NM_UTILS_TEST_ALL; } void _nm_utils_set_testing (NMUtilsTestFlags flags) { g_assert (!NM_FLAGS_ANY (flags, ~NM_UTILS_TEST_ALL)); /* mask out everything except ALL, and always set GENERAL. */ flags = (flags & NM_UTILS_TEST_ALL) | (_NM_UTILS_TEST_GENERAL | _NM_UTILS_TEST_INITIALIZED); if (!g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) { /* We only allow setting _nm_utils_set_testing() once, before fetching the * value with nm_utils_get_testing(). */ g_return_if_reached (); } } /*****************************************************************************/ static GSList *_singletons = NULL; static gboolean _singletons_shutdown = FALSE; static void _nm_singleton_instance_weak_cb (gpointer data, GObject *where_the_object_was) { _singletons = g_slist_remove (_singletons, where_the_object_was); } static void __attribute__((destructor)) _nm_singleton_instance_destroy (void) { _singletons_shutdown = TRUE; while (_singletons) { GObject *instance = _singletons->data; _singletons = g_slist_delete_link (_singletons, _singletons); g_object_weak_unref (instance, _nm_singleton_instance_weak_cb, NULL); if (instance->ref_count > 1) nm_log_dbg (LOGD_CORE, "disown %s singleton (%p)", G_OBJECT_TYPE_NAME (instance), instance); g_object_unref (instance); } } void _nm_singleton_instance_register_destruction (GObject *instance) { g_return_if_fail (G_IS_OBJECT (instance)); /* Don't allow registration after shutdown. We only destroy the singletons * once. */ g_return_if_fail (!_singletons_shutdown); g_object_weak_ref (instance, _nm_singleton_instance_weak_cb, NULL); _singletons = g_slist_prepend (_singletons, instance); } /*****************************************************************************/ static double _exp10 (guint16 ex) { double v; if (ex == 0) return 1.0; v = _exp10 (ex / 2); v = v * v; if (ex % 2) v *= 10; return v; } /* * nm_utils_exp10: * @ex: the exponent * * Returns: 10^ex, or pow(10, ex), or exp10(ex). */ double nm_utils_exp10 (gint16 ex) { if (ex >= 0) return _exp10 (ex); return 1.0 / _exp10 (- ((gint32) ex)); } /*****************************************************************************/ /* * nm_ethernet_address_is_valid: * @addr: pointer to a binary or ASCII Ethernet address * @len: length of @addr, or -1 if @addr is ASCII * * Compares an Ethernet address against known invalid addresses. * Returns: %TRUE if @addr is a valid Ethernet address, %FALSE if it is not. */ gboolean nm_ethernet_address_is_valid (gconstpointer addr, gssize len) { guint8 invalid_addr[4][ETH_ALEN] = { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x44, 0x44, 0x44, 0x44, 0x44, 0x44}, {0x00, 0x30, 0xb4, 0x00, 0x00, 0x00}, /* prism54 dummy MAC */ }; guint8 addr_bin[ETH_ALEN]; guint i; if (!addr) { g_return_val_if_fail (len == -1 || len == ETH_ALEN, FALSE); return FALSE; } if (len == -1) { if (!nm_utils_hwaddr_aton (addr, addr_bin, ETH_ALEN)) return FALSE; addr = addr_bin; } else if (len != ETH_ALEN) g_return_val_if_reached (FALSE); /* Check for multicast address */ if ((((guint8 *) addr)[0]) & 0x01) return FALSE; for (i = 0; i < G_N_ELEMENTS (invalid_addr); i++) { if (nm_utils_hwaddr_matches (addr, ETH_ALEN, invalid_addr[i], ETH_ALEN)) return FALSE; } return TRUE; } gconstpointer nm_utils_ipx_address_clear_host_address (int family, gpointer dst, gconstpointer src, guint8 plen) { g_return_val_if_fail (src, NULL); g_return_val_if_fail (dst, NULL); switch (family) { case AF_INET: g_return_val_if_fail (plen <= 32, NULL); *((guint32 *) dst) = nm_utils_ip4_address_clear_host_address (*((guint32 *) src), plen); break; case AF_INET6: g_return_val_if_fail (plen <= 128, NULL); nm_utils_ip6_address_clear_host_address (dst, src, plen); break; default: g_return_val_if_reached (NULL); } return dst; } /* nm_utils_ip4_address_clear_host_address: * @addr: source ip6 address * @plen: prefix length of network * * returns: the input address, with the host address set to 0. */ in_addr_t nm_utils_ip4_address_clear_host_address (in_addr_t addr, guint8 plen) { return addr & _nm_utils_ip4_prefix_to_netmask (plen); } /* nm_utils_ip6_address_clear_host_address: * @dst: destination output buffer, will contain the network part of the @src address * @src: source ip6 address * @plen: prefix length of network * * Note: this function is self assignment safe, to update @src inplace, set both * @dst and @src to the same destination or set @src NULL. */ const struct in6_addr * nm_utils_ip6_address_clear_host_address (struct in6_addr *dst, const struct in6_addr *src, guint8 plen) { g_return_val_if_fail (plen <= 128, NULL); g_return_val_if_fail (dst, NULL); if (!src) src = dst; if (plen < 128) { guint nbytes = plen / 8; guint nbits = plen % 8; if (nbytes && dst != src) memcpy (dst, src, nbytes); if (nbits) { dst->s6_addr[nbytes] = (src->s6_addr[nbytes] & (0xFF << (8 - nbits))); nbytes++; } if (nbytes <= 15) memset (&dst->s6_addr[nbytes], 0, 16 - nbytes); } else if (src != dst) *dst = *src; return dst; } int nm_utils_ip6_address_same_prefix_cmp (const struct in6_addr *addr_a, const struct in6_addr *addr_b, guint8 plen) { int nbytes; guint8 va, vb, m; if (plen >= 128) NM_CMP_DIRECT_MEMCMP (addr_a, addr_b, sizeof (struct in6_addr)); else { nbytes = plen / 8; if (nbytes) NM_CMP_DIRECT_MEMCMP (addr_a, addr_b, nbytes); plen = plen % 8; if (plen != 0) { m = ~((1 << (8 - plen)) - 1); va = ((((const guint8 *) addr_a))[nbytes]) & m; vb = ((((const guint8 *) addr_b))[nbytes]) & m; NM_CMP_DIRECT (va, vb); } } return 0; } /*****************************************************************************/ void nm_utils_array_remove_at_indexes (GArray *array, const guint *indexes_to_delete, gsize len) { gsize elt_size; guint index_to_delete; guint i_src; guint mm_src, mm_dst, mm_len; gsize i_itd; guint res_length; g_return_if_fail (array); if (!len) return; g_return_if_fail (indexes_to_delete); elt_size = g_array_get_element_size (array); i_itd = 0; index_to_delete = indexes_to_delete[0]; if (index_to_delete >= array->len) g_return_if_reached (); res_length = array->len - 1; mm_dst = index_to_delete; mm_src = index_to_delete; mm_len = 0; for (i_src = index_to_delete; i_src < array->len; i_src++) { if (i_src < index_to_delete) mm_len++; else { /* we require indexes_to_delete to contain non-repeated, ascending * indexes. Otherwise we would need to presort the indexes. */ while (TRUE) { guint dd; if (i_itd + 1 >= len) { index_to_delete = G_MAXUINT; break; } dd = indexes_to_delete[++i_itd]; if (dd > index_to_delete) { if (dd >= array->len) g_warn_if_reached (); else { g_assert (res_length > 0); res_length--; } index_to_delete = dd; break; } g_warn_if_reached (); } if (mm_len) { memmove (&array->data[mm_dst * elt_size], &array->data[mm_src * elt_size], mm_len * elt_size); mm_dst += mm_len; mm_src += mm_len + 1; mm_len = 0; } else mm_src++; } } if (mm_len) { memmove (&array->data[mm_dst * elt_size], &array->data[mm_src * elt_size], mm_len * elt_size); } g_array_set_size (array, res_length); } static const char * _trunk_first_line (char *str) { char *s; s = strchr (str, '\n'); if (s) s[0] = '\0'; return str; } int nm_utils_modprobe (GError **error, gboolean suppress_error_logging, const char *arg1, ...) { gs_unref_ptrarray GPtrArray *argv = NULL; int exit_status; gs_free char *_log_str = NULL; #define ARGV_TO_STR(argv) (_log_str ? _log_str : (_log_str = g_strjoinv (" ", (char **) argv->pdata))) GError *local = NULL; va_list ap; NMLogLevel llevel = suppress_error_logging ? LOGL_DEBUG : LOGL_ERR; gs_free char *std_out = NULL, *std_err = NULL; g_return_val_if_fail (!error || !*error, -1); g_return_val_if_fail (arg1, -1); /* construct the argument list */ argv = g_ptr_array_sized_new (4); g_ptr_array_add (argv, "/sbin/modprobe"); g_ptr_array_add (argv, (char *) arg1); va_start (ap, arg1); while ((arg1 = va_arg (ap, const char *))) g_ptr_array_add (argv, (char *) arg1); va_end (ap); g_ptr_array_add (argv, NULL); nm_log_dbg (LOGD_CORE, "modprobe: '%s'", ARGV_TO_STR (argv)); if (!g_spawn_sync (NULL, (char **) argv->pdata, NULL, 0, NULL, NULL, &std_out, &std_err, &exit_status, &local)) { nm_log (llevel, LOGD_CORE, NULL, NULL, "modprobe: '%s' failed: %s", ARGV_TO_STR (argv), local->message); g_propagate_error (error, local); return -1; } else if (exit_status != 0) { nm_log (llevel, LOGD_CORE, NULL, NULL, "modprobe: '%s' exited with error %d%s%s%s%s%s%s", ARGV_TO_STR (argv), exit_status, std_out&&*std_out ? " (" : "", std_out&&*std_out ? _trunk_first_line (std_out) : "", std_out&&*std_out ? ")" : "", std_err&&*std_err ? " (" : "", std_err&&*std_err ? _trunk_first_line (std_err) : "", std_err&&*std_err ? ")" : ""); } return exit_status; } /** * nm_utils_get_start_time_for_pid: * @pid: the process identifier * @out_state: return the state character, like R, S, Z. See `man 5 proc`. * @out_ppid: parent process id * * Originally copied from polkit source (src/polkit/polkitunixprocess.c) * and adjusted. * * Returns: the timestamp when the process started (by parsing /proc/$PID/stat). * If an error occurs (e.g. the process does not exist), 0 is returned. * * The returned start time counts since boot, in the unit HZ (with HZ usually being (1/100) seconds) **/ guint64 nm_utils_get_start_time_for_pid (pid_t pid, char *out_state, pid_t *out_ppid) { guint64 start_time; char filename[256]; gs_free gchar *contents = NULL; size_t length; gs_strfreev gchar **tokens = NULL; guint num_tokens; gchar *p; char state = ' '; gint64 ppid = 0; start_time = 0; contents = NULL; g_return_val_if_fail (pid > 0, 0); nm_sprintf_buf (filename, "/proc/%"G_GUINT64_FORMAT"/stat", (guint64) pid); if (!g_file_get_contents (filename, &contents, &length, NULL)) goto fail; /* start time is the token at index 19 after the '(process name)' entry - since only this * field can contain the ')' character, search backwards for this to avoid malicious * processes trying to fool us */ p = strrchr (contents, ')'); if (p == NULL) goto fail; p += 2; /* skip ') ' */ if (p - contents >= (int) length) goto fail; state = p[0]; tokens = g_strsplit (p, " ", 0); num_tokens = g_strv_length (tokens); if (num_tokens < 20) goto fail; if (out_ppid) { ppid = _nm_utils_ascii_str_to_int64 (tokens[1], 10, 1, G_MAXINT, 0); if (ppid == 0) goto fail; } start_time = _nm_utils_ascii_str_to_int64 (tokens[19], 10, 1, G_MAXINT64, 0); if (start_time == 0) goto fail; NM_SET_OUT (out_state, state); NM_SET_OUT (out_ppid, ppid); return start_time; fail: NM_SET_OUT (out_state, ' '); NM_SET_OUT (out_ppid, 0); return 0; } /*****************************************************************************/ typedef struct { pid_t pid; NMLogDomain log_domain; union { struct { gint64 wait_start_us; guint source_timeout_kill_id; } async; struct { gboolean success; int child_status; } sync; }; NMUtilsKillChildAsyncCb callback; void *user_data; char log_name[1]; /* variable-length object, must be last element!! */ } KillChildAsyncData; #define LOG_NAME_FMT "kill child process '%s' (%ld)" #define LOG_NAME_PROCESS_FMT "kill process '%s' (%ld)" #define LOG_NAME_ARGS log_name,(long)pid static KillChildAsyncData * _kc_async_data_alloc (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data) { KillChildAsyncData *data; size_t log_name_len; /* append the name at the end of our KillChildAsyncData. */ log_name_len = strlen (LOG_NAME_FMT) + 20 + strlen (log_name); data = g_malloc (sizeof (KillChildAsyncData) - 1 + log_name_len); g_snprintf (data->log_name, log_name_len, LOG_NAME_FMT, LOG_NAME_ARGS); data->pid = pid; data->user_data = user_data; data->callback = callback; data->log_domain = log_domain; return data; } #define KC_EXIT_TO_STRING_BUF_SIZE 128 static const char * _kc_exit_to_string (char *buf, int exit) #define _kc_exit_to_string(buf, exit) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_EXIT_TO_STRING_BUF_SIZE && sizeof ((buf)[0]) == 1), _kc_exit_to_string (buf, exit) ) { if (WIFEXITED (exit)) g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "normally with status %d", WEXITSTATUS (exit)); else if (WIFSIGNALED (exit)) g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "by signal %d", WTERMSIG (exit)); else g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "with unexpected status %d", exit); return buf; } static const char * _kc_signal_to_string (int sig) { switch (sig) { case 0: return "no signal (0)"; case SIGKILL: return "SIGKILL (" G_STRINGIFY (SIGKILL) ")"; case SIGTERM: return "SIGTERM (" G_STRINGIFY (SIGTERM) ")"; default: return "Unexpected signal"; } } #define KC_WAITED_TO_STRING 100 static const char * _kc_waited_to_string (char *buf, gint64 wait_start_us) #define _kc_waited_to_string(buf, wait_start_us) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_WAITED_TO_STRING && sizeof ((buf)[0]) == 1), _kc_waited_to_string (buf, wait_start_us) ) { g_snprintf (buf, KC_WAITED_TO_STRING, " (%ld usec elapsed)", (long) (nm_utils_get_monotonic_timestamp_us () - wait_start_us)); return buf; } static void _kc_cb_watch_child (GPid pid, gint status, gpointer user_data) { KillChildAsyncData *data = user_data; char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE], buf_wait[KC_WAITED_TO_STRING]; if (data->async.source_timeout_kill_id) g_source_remove (data->async.source_timeout_kill_id); nm_log_dbg (data->log_domain, "%s: terminated %s%s", data->log_name, _kc_exit_to_string (buf_exit, status), _kc_waited_to_string (buf_wait, data->async.wait_start_us)); if (data->callback) data->callback (pid, TRUE, status, data->user_data); g_free (data); } static gboolean _kc_cb_timeout_grace_period (void *user_data) { KillChildAsyncData *data = user_data; int ret, errsv; data->async.source_timeout_kill_id = 0; if ((ret = kill (data->pid, SIGKILL)) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv != ESRCH) { nm_log_err (LOGD_CORE | data->log_domain, "%s: kill(SIGKILL) returned unexpected return value %d: (%s, %d)", data->log_name, ret, strerror (errsv), errsv); } } else { nm_log_dbg (data->log_domain, "%s: process not terminated after %ld usec. Sending SIGKILL signal", data->log_name, (long) (nm_utils_get_monotonic_timestamp_us () - data->async.wait_start_us)); } return G_SOURCE_REMOVE; } static gboolean _kc_invoke_callback_idle (gpointer user_data) { KillChildAsyncData *data = user_data; if (data->sync.success) { char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE]; nm_log_dbg (data->log_domain, "%s: invoke callback: terminated %s", data->log_name, _kc_exit_to_string (buf_exit, data->sync.child_status)); } else nm_log_dbg (data->log_domain, "%s: invoke callback: killing child failed", data->log_name); data->callback (data->pid, data->sync.success, data->sync.child_status, data->user_data); g_free (data); return G_SOURCE_REMOVE; } static void _kc_invoke_callback (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data, gboolean success, int child_status) { KillChildAsyncData *data; if (!callback) return; data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data); data->sync.success = success; data->sync.child_status = child_status; g_idle_add (_kc_invoke_callback_idle, data); } /* nm_utils_kill_child_async: * @pid: the process id of the process to kill * @sig: signal to send initially. Set to 0 to send not signal. * @log_domain: the logging domain used for logging (LOGD_NONE to suppress logging) * @log_name: for logging, the name of the processes to kill * @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value * to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter is ignored. * @callback: (allow-none): callback after the child terminated. This function will always * be invoked asynchronously. * @user_data: passed on to callback * * Uses g_child_watch_add(), so note the glib comment: if you obtain pid from g_spawn_async() or * g_spawn_async_with_pipes() you will need to pass %G_SPAWN_DO_NOT_REAP_CHILD as flag to the spawn * function for the child watching to work. * Also note, that you must g_source_remove() any other child watchers for @pid because glib * supports only one watcher per child. **/ void nm_utils_kill_child_async (pid_t pid, int sig, NMLogDomain log_domain, const char *log_name, guint32 wait_before_kill_msec, NMUtilsKillChildAsyncCb callback, void *user_data) { int status = 0, errsv; pid_t ret; KillChildAsyncData *data; char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE]; g_return_if_fail (pid > 0); g_return_if_fail (log_name != NULL); /* let's see if the child already terminated... */ ret = waitpid (pid, &status, WNOHANG); if (ret > 0) { nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s", LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status)); _kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status); return; } else if (ret != 0) { errsv = errno; /* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */ if (errsv != ECHILD) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)", LOG_NAME_ARGS, strerror (errsv), errsv); _kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1); return; } } /* send the first signal. */ if (kill (pid, sig) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv != ESRCH) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error sending %s: %s (%d)", LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv); _kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1); return; } /* let's try again with waitpid, probably there was a race... */ ret = waitpid (pid, &status, 0); if (ret > 0) { nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s", LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status)); _kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status); } else { errsv = errno; nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s", LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig)); _kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1); } return; } data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data); data->async.wait_start_us = nm_utils_get_monotonic_timestamp_us (); if (sig != SIGKILL && wait_before_kill_msec > 0) { data->async.source_timeout_kill_id = g_timeout_add (wait_before_kill_msec, _kc_cb_timeout_grace_period, data); nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s (send SIGKILL in %ld milliseconds)...", data->log_name, _kc_signal_to_string (sig), (long) wait_before_kill_msec); } else { data->async.source_timeout_kill_id = 0; nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s...", data->log_name, _kc_signal_to_string (sig)); } g_child_watch_add (pid, _kc_cb_watch_child, data); } static inline gulong _sleep_duration_convert_ms_to_us (guint32 sleep_duration_msec) { if (sleep_duration_msec > 0) { guint64 x = (gint64) sleep_duration_msec * (guint64) 1000L; return x < G_MAXULONG ? (gulong) x : G_MAXULONG; } return G_USEC_PER_SEC / 20; } /* nm_utils_kill_child_sync: * @pid: process id to kill * @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the * second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds. * @log_domain: log debug information for this domain. Errors and warnings are logged both * as %LOGD_CORE and @log_domain. * @log_name: name of the process to kill for logging. * @child_status: (out) (allow-none): return the exit status of the child, if no error occured. * @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value * to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has not effect. * @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate. * Set to zero, to use the default (meaning 20 wakeups per seconds). * * Kill a child process synchronously and wait. The function first checks if the child already terminated * and if it did, return the exit status. Otherwise send one @sig signal. @sig will always be * sent unless the child already exited. If the child does not exit within @wait_before_kill_msec milliseconds, * the function will send %SIGKILL and waits for the child indefinitly. If @wait_before_kill_msec is zero, no * %SIGKILL signal will be sent. * * In case of error, errno is preserved to contain the last reason of failure. **/ gboolean nm_utils_kill_child_sync (pid_t pid, int sig, NMLogDomain log_domain, const char *log_name, int *child_status, guint32 wait_before_kill_msec, guint32 sleep_duration_msec) { int status = 0, errsv = 0; pid_t ret; gboolean success = FALSE; gboolean was_waiting = FALSE, send_kill = FALSE; char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE]; char buf_wait[KC_WAITED_TO_STRING]; gint64 wait_start_us; g_return_val_if_fail (pid > 0, FALSE); g_return_val_if_fail (log_name != NULL, FALSE); /* check if the child process already terminated... */ ret = waitpid (pid, &status, WNOHANG); if (ret > 0) { nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s", LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status)); success = TRUE; goto out; } else if (ret != 0) { errsv = errno; /* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */ if (errsv != ECHILD) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)", LOG_NAME_ARGS, strerror (errsv), errsv); goto out; } } /* send first signal @sig */ if (kill (pid, sig) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv != ESRCH) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send %s: %s (%d)", LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv); } else { /* let's try again with waitpid, probably there was a race... */ ret = waitpid (pid, &status, 0); if (ret > 0) { nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s", LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status)); success = TRUE; } else { errsv = errno; nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s", LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig)); } } goto out; } wait_start_us = nm_utils_get_monotonic_timestamp_us (); /* wait for the process to terminated... */ if (sig != SIGKILL) { gint64 wait_until, now; gulong sleep_time, sleep_duration_usec; int loop_count = 0; sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec); wait_until = wait_before_kill_msec <= 0 ? 0 : wait_start_us + (((gint64) wait_before_kill_msec) * 1000L); while (TRUE) { ret = waitpid (pid, &status, WNOHANG); if (ret > 0) { nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s, process %ld exited %s%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), (long) ret, _kc_exit_to_string (buf_exit, status), was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); success = TRUE; goto out; } if (ret == -1) { errsv = errno; /* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */ if (errsv != ECHILD) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s, waitpid failed with %s (%d)%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv, was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); goto out; } } if (!wait_until) break; now = nm_utils_get_monotonic_timestamp_us (); if (now >= wait_until) break; if (!was_waiting) { nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting up to %ld milliseconds for process to terminate normally after sending %s...", LOG_NAME_ARGS, (long) MAX (wait_before_kill_msec, 0), _kc_signal_to_string (sig)); was_waiting = TRUE; } sleep_time = MIN (wait_until - now, sleep_duration_usec); if (loop_count < 20) { /* At the beginning we expect the process to die fast. * Limit the sleep time, the limit doubles with every iteration. */ sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000); loop_count++; } g_usleep (sleep_time); } /* send SIGKILL, if called with @wait_before_kill_msec > 0 */ if (wait_until) { nm_log_dbg (log_domain, LOG_NAME_FMT ": sending SIGKILL...", LOG_NAME_ARGS); send_kill = TRUE; if (kill (pid, SIGKILL) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv != ESRCH) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send SIGKILL (after sending %s), %s (%d)", LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv); goto out; } } } } if (!was_waiting) { nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting for process to terminate after sending %s%s...", LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : ""); } /* block until the child terminates. */ while ((ret = waitpid (pid, &status, 0)) <= 0) { errsv = errno; if (errsv != EINTR) { nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s%s, waitpid failed with %s (%d)%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", strerror (errsv), errsv, _kc_waited_to_string (buf_wait, wait_start_us)); goto out; } } nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s%s, process %ld exited %s%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", (long) ret, _kc_exit_to_string (buf_exit, status), _kc_waited_to_string (buf_wait, wait_start_us)); success = TRUE; out: if (child_status) *child_status = success ? status : -1; errno = success ? 0 : errsv; return success; } /* nm_utils_kill_process_sync: * @pid: process id to kill * @start_time: the start time of the process to kill (as obtained by nm_utils_get_start_time_for_pid()). * This is an optional argument, to avoid (somewhat) killing the wrong process as @pid * might get recycled. You can pass 0, to not provide this parameter. * @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the * second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds. * @log_domain: log debug information for this domain. Errors and warnings are logged both * as %LOGD_CORE and @log_domain. * @log_name: name of the process to kill for logging. * @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value * to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has no effect. * If @max_wait_msec is set but less then @wait_before_kill_msec, the final %SIGKILL will also * not be send. * @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate. * Set to zero, to use the default (meaning 20 wakeups per seconds). * @max_wait_msec: if 0, waits indefinitely until the process is gone (or a zombie). Otherwise, this * is the maxium wait time until returning. If @max_wait_msec is non-zero but smaller then @wait_before_kill_msec, * we will not send a final %SIGKILL. * * Kill a non-child process synchronously and wait. This function will not return before the * process with PID @pid is gone, the process is a zombie, or @max_wait_msec expires. **/ void nm_utils_kill_process_sync (pid_t pid, guint64 start_time, int sig, NMLogDomain log_domain, const char *log_name, guint32 wait_before_kill_msec, guint32 sleep_duration_msec, guint32 max_wait_msec) { int errsv; guint64 start_time0; gint64 wait_until_sigkill, now, wait_start_us, max_wait_until; gulong sleep_time, sleep_duration_usec; int loop_count = 0; gboolean was_waiting = FALSE; char buf_wait[KC_WAITED_TO_STRING]; char p_state; g_return_if_fail (pid > 0); g_return_if_fail (log_name != NULL); start_time0 = nm_utils_get_start_time_for_pid (pid, &p_state, NULL); if (start_time0 == 0) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it seems already gone", LOG_NAME_ARGS, (long int) pid); return; } if (start_time != 0 && start_time != start_time0) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": don't kill process %ld because the start_time is unexpectedly %lu instead of %ld", LOG_NAME_ARGS, (long int) pid, (unsigned long) start_time0, (unsigned long) start_time); return; } switch (p_state) { case 'Z': case 'x': case 'X': nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it is already a zombie (%c)", LOG_NAME_ARGS, (long int) pid, p_state); return; default: break; } if (kill (pid, sig) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv == ESRCH) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s because process seems gone", LOG_NAME_ARGS, _kc_signal_to_string (sig)); } else { nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s: %s (%d)", LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv); } return; } /* wait for the process to terminate... */ wait_start_us = nm_utils_get_monotonic_timestamp_us (); sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec); if (sig != SIGKILL && wait_before_kill_msec) wait_until_sigkill = wait_start_us + (((gint64) wait_before_kill_msec) * 1000L); else wait_until_sigkill = 0; if (max_wait_msec > 0) { max_wait_until = wait_start_us + (((gint64) max_wait_msec) * 1000L); if (wait_until_sigkill > 0 && wait_until_sigkill > max_wait_msec) wait_until_sigkill = 0; } else max_wait_until = 0; while (TRUE) { start_time = nm_utils_get_start_time_for_pid (pid, &p_state, NULL); if (start_time != start_time0) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone after sending signal %s%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); return; } switch (p_state) { case 'Z': case 'x': case 'X': nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is a zombie (%c) after sending signal %s%s", LOG_NAME_ARGS, p_state, _kc_signal_to_string (sig), was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); return; default: break; } if (kill (pid, 0) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv == ESRCH) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie after sending signal %s%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); } else { nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to kill(%ld, 0): %s (%d)%s", LOG_NAME_ARGS, (long int) pid, strerror (errsv), errsv, was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); } return; } sleep_time = sleep_duration_usec; now = nm_utils_get_monotonic_timestamp_us (); if ( max_wait_until != 0 && now >= max_wait_until) { if (wait_until_sigkill != 0) { /* wait_before_kill_msec is not larger then max_wait_until but we did not yet send * SIGKILL. Although we already reached our timeout, we don't want to skip sending * the signal. Even if we don't wait for the process to disappear. */ nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS); kill (pid, SIGKILL); } nm_log_warn (log_domain, LOG_NAME_PROCESS_FMT ": timeout %u msec waiting for process to disappear (after sending %s)%s", LOG_NAME_ARGS, (unsigned) max_wait_until, _kc_signal_to_string (sig), was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : ""); return; } if (wait_until_sigkill != 0) { if (now >= wait_until_sigkill) { /* Still not dead. SIGKILL now... */ nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS); if (kill (pid, SIGKILL) != 0) { errsv = errno; /* ESRCH means, process does not exist or is already a zombie. */ if (errsv != ESRCH) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie%s", LOG_NAME_ARGS, _kc_waited_to_string (buf_wait, wait_start_us)); } else { nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send SIGKILL (after sending %s), %s (%d)%s", LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv, _kc_waited_to_string (buf_wait, wait_start_us)); } return; } sig = SIGKILL; wait_until_sigkill = 0; loop_count = 0; /* reset the loop_count. Now we really expect the process to die quickly. */ } else sleep_time = MIN (wait_until_sigkill - now, sleep_duration_usec); } if (!was_waiting) { if (wait_until_sigkill != 0) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear before sending KILL signal after sending %s...", LOG_NAME_ARGS, (long) wait_before_kill_msec, _kc_signal_to_string (sig)); } else if (max_wait_until != 0) { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear after sending %s...", LOG_NAME_ARGS, (long) max_wait_msec, _kc_signal_to_string (sig)); } else { nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting for process to disappear after sending %s...", LOG_NAME_ARGS, _kc_signal_to_string (sig)); } was_waiting = TRUE; } if (loop_count < 20) { /* At the beginning we expect the process to die fast. * Limit the sleep time, the limit doubles with every iteration. */ sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000); loop_count++; } g_usleep (sleep_time); } } #undef LOG_NAME_FMT #undef LOG_NAME_PROCESS_FMT #undef LOG_NAME_ARGS const char *const NM_PATHS_DEFAULT[] = { PREFIX "/sbin/", PREFIX "/bin/", "/usr/local/sbin/", "/sbin/", "/usr/sbin/", "/usr/local/bin/", "/bin/", "/usr/bin/", NULL, }; const char * nm_utils_find_helper(const char *progname, const char *try_first, GError **error) { return nm_utils_file_search_in_paths (progname, try_first, NM_PATHS_DEFAULT, G_FILE_TEST_IS_EXECUTABLE, NULL, NULL, error); } /*****************************************************************************/ /** * nm_utils_read_link_absolute: * @link_file: file name of the symbolic link * @error: error reason in case of failure * * Uses to g_file_read_link()/readlink() to read the symlink * and returns the result as absolute path. **/ char * nm_utils_read_link_absolute (const char *link_file, GError **error) { char *ln, *dirname, *ln_abs; ln = g_file_read_link (link_file, error); if (!ln) return NULL; if (g_path_is_absolute (ln)) return ln; dirname = g_path_get_dirname (link_file); if (!g_path_is_absolute (link_file)) { gs_free char *dirname_rel = dirname; gs_free char *current_dir = g_get_current_dir (); dirname = g_build_filename (current_dir, dirname_rel, NULL); } ln_abs = g_build_filename (dirname, ln, NULL); g_free (dirname); g_free (ln); return ln_abs; } /*****************************************************************************/ #define MAC_TAG "mac:" #define INTERFACE_NAME_TAG "interface-name:" #define DEVICE_TYPE_TAG "type:" #define DRIVER_TAG "driver:" #define SUBCHAN_TAG "s390-subchannels:" #define EXCEPT_TAG "except:" #define MATCH_TAG_CONFIG_NM_VERSION "nm-version:" #define MATCH_TAG_CONFIG_NM_VERSION_MIN "nm-version-min:" #define MATCH_TAG_CONFIG_NM_VERSION_MAX "nm-version-max:" #define MATCH_TAG_CONFIG_ENV "env:" typedef struct { const char *interface_name; const char *device_type; const char *driver; const char *driver_version; struct { const char *value; gboolean is_parsed; guint len; guint8 bin[NM_UTILS_HWADDR_LEN_MAX]; } hwaddr; struct { const char *value; gboolean is_parsed; guint32 a; guint32 b; guint32 c; } s390_subchannels; } MatchDeviceData; static gboolean match_device_s390_subchannels_parse (const char *s390_subchannels, guint32 *out_a, guint32 *out_b, guint32 *out_c) { char buf[30 + 1]; const int BUFSIZE = G_N_ELEMENTS (buf) - 1; guint i = 0; char *pa = NULL, *pb = NULL, *pc = NULL; gint64 a, b, c; nm_assert (s390_subchannels); nm_assert (out_a); nm_assert (out_b); nm_assert (out_c); if (!g_ascii_isxdigit (s390_subchannels[0])) return FALSE; /* Get the first channel */ for (i = 0; s390_subchannels[i]; i++) { char ch = s390_subchannels[i]; if (!g_ascii_isxdigit (ch) && ch != '.') { if (ch == ',') { /* FIXME: currently we consider the first channel and ignore * everything after the first ',' separator. Maybe we should * validate all present channels? */ break; } return FALSE; /* Invalid chars */ } if (i >= BUFSIZE) return FALSE; /* Too long to be a subchannel */ buf[i] = ch; } buf[i] = '\0'; /* and grab each of its elements, there should be 3 */ pa = &buf[0]; pb = strchr (pa, '.'); if (pb) pc = strchr (pb + 1, '.'); if (!pb || !pc) return FALSE; *pb++ = '\0'; *pc++ = '\0'; a = _nm_utils_ascii_str_to_int64 (pa, 16, 0, G_MAXUINT32, -1); if (a == -1) return FALSE; b = _nm_utils_ascii_str_to_int64 (pb, 16, 0, G_MAXUINT32, -1); if (b == -1) return FALSE; c = _nm_utils_ascii_str_to_int64 (pc, 16, 0, G_MAXUINT32, -1); if (c == -1) return FALSE; *out_a = (guint32) a; *out_b = (guint32) b; *out_c = (guint32) c; return TRUE; } static gboolean match_data_s390_subchannels_eval (const char *spec_str, MatchDeviceData *match_data) { guint32 a, b, c; if (G_UNLIKELY (!match_data->s390_subchannels.is_parsed)) { match_data->s390_subchannels.is_parsed = TRUE; if ( !match_data->s390_subchannels.value || !match_device_s390_subchannels_parse (match_data->s390_subchannels.value, &match_data->s390_subchannels.a, &match_data->s390_subchannels.b, &match_data->s390_subchannels.c)) { match_data->s390_subchannels.value = NULL; return FALSE; } } else if (!match_data->s390_subchannels.value) return FALSE; if (!match_device_s390_subchannels_parse (spec_str, &a, &b, &c)) return FALSE; return match_data->s390_subchannels.a == a && match_data->s390_subchannels.b == b && match_data->s390_subchannels.c == c; } static gboolean match_device_hwaddr_eval (const char *spec_str, MatchDeviceData *match_data) { if (G_UNLIKELY (!match_data->hwaddr.is_parsed)) { match_data->hwaddr.is_parsed = TRUE; if (match_data->hwaddr.value) { gsize l; if (!_nm_utils_hwaddr_aton (match_data->hwaddr.value, match_data->hwaddr.bin, sizeof (match_data->hwaddr.bin), &l)) g_return_val_if_reached (FALSE); match_data->hwaddr.len = l; } else return FALSE; } else if (!match_data->hwaddr.len) return FALSE; return nm_utils_hwaddr_matches (spec_str, -1, match_data->hwaddr.bin, match_data->hwaddr.len); } #define _MATCH_CHECK(spec_str, tag) \ ({ \ gboolean _has = FALSE; \ \ if (!g_ascii_strncasecmp (spec_str, (""tag""), NM_STRLEN (tag))) { \ spec_str += NM_STRLEN (tag); \ _has = TRUE; \ } \ _has; \ }) static const char * match_except (const char *spec_str, gboolean *out_except) { if (_MATCH_CHECK (spec_str, EXCEPT_TAG)) *out_except = TRUE; else *out_except = FALSE; return spec_str; } static gboolean match_device_eval (const char *spec_str, gboolean allow_fuzzy, MatchDeviceData *match_data) { if (spec_str[0] == '*' && spec_str[1] == '\0') return TRUE; if (_MATCH_CHECK (spec_str, DEVICE_TYPE_TAG)) { return match_data->device_type && nm_streq (spec_str, match_data->device_type); } if (_MATCH_CHECK (spec_str, MAC_TAG)) return match_device_hwaddr_eval (spec_str, match_data); if (_MATCH_CHECK (spec_str, INTERFACE_NAME_TAG)) { gboolean use_pattern = FALSE; if (spec_str[0] == '=') spec_str += 1; else { if (spec_str[0] == '~') spec_str += 1; use_pattern = TRUE; } if (match_data->interface_name) { if (nm_streq (spec_str, match_data->interface_name)) return TRUE; if (use_pattern && g_pattern_match_simple (spec_str, match_data->interface_name)) return TRUE; } return FALSE; } if (_MATCH_CHECK (spec_str, DRIVER_TAG)) { const char *t; if (!match_data->driver) return FALSE; /* support: * 1) "${DRIVER}" * In this case, DRIVER may not contain a '/' character. * It matches any driver version. * 2) "${DRIVER}/${DRIVER_VERSION}" * In this case, DRIVER may contains '/' but DRIVER_VERSION * may not. A '/' in DRIVER_VERSION may be replaced by '?'. * * It follows, that "${DRIVER}/""*" is like 1), but allows * '/' inside DRIVER. * * The fields match to what `nmcli -f GENERAL.DRIVER,GENERAL.DRIVER-VERSION device show` * gives. However, DRIVER matches literally, while DRIVER_VERSION is a glob * supporting ? and *. */ t = strrchr (spec_str, '/'); if (!t) return nm_streq (spec_str, match_data->driver); return (strncmp (spec_str, match_data->driver, t - spec_str) == 0) && g_pattern_match_simple (&t[1], match_data->driver_version ?: ""); } if (_MATCH_CHECK (spec_str, SUBCHAN_TAG)) return match_data_s390_subchannels_eval (spec_str, match_data); if (allow_fuzzy) { if (match_device_hwaddr_eval (spec_str, match_data)) return TRUE; if ( match_data->interface_name && nm_streq (spec_str, match_data->interface_name)) return TRUE; } return FALSE; } NMMatchSpecMatchType nm_match_spec_device (const GSList *specs, const char *interface_name, const char *device_type, const char *driver, const char *driver_version, const char *hwaddr, const char *s390_subchannels) { const GSList *iter; NMMatchSpecMatchType match; const char *spec_str; gboolean except; MatchDeviceData match_data = { .interface_name = interface_name, .device_type = nm_str_not_empty (device_type), .driver = nm_str_not_empty (driver), .driver_version = nm_str_not_empty (driver_version), .hwaddr = { .value = hwaddr, }, .s390_subchannels = { .value = s390_subchannels, }, }; nm_assert (!hwaddr || nm_utils_hwaddr_valid (hwaddr, -1)); if (!specs) return NM_MATCH_SPEC_NO_MATCH; match = NM_MATCH_SPEC_NO_MATCH; /* pre-search for "*" */ for (iter = specs; iter; iter = iter->next) { spec_str = iter->data; if (spec_str && spec_str[0] == '*' && spec_str[1] == '\0') { match = NM_MATCH_SPEC_MATCH; break; } } for (iter = specs; iter; iter = iter->next) { spec_str = iter->data; if (!spec_str || !*spec_str) continue; spec_str = match_except (spec_str, &except); if ( !except && match == NM_MATCH_SPEC_MATCH) { /* we have no "except-match" but already match. No need to evaluate * the match, we cannot match stronger. */ continue; } if (!match_device_eval (spec_str, !except, &match_data)) continue; if (except) return NM_MATCH_SPEC_NEG_MATCH; match = NM_MATCH_SPEC_MATCH; } return match; } static gboolean match_config_eval (const char *str, const char *tag, guint cur_nm_version) { gs_free char *s_ver = NULL; gs_strfreev char **s_ver_tokens = NULL; gint v_maj = -1, v_min = -1, v_mic = -1; guint c_maj = -1, c_min = -1, c_mic = -1; guint n_tokens; s_ver = g_strdup (str); g_strstrip (s_ver); /* Let's be strict with the accepted format here. No funny stuff!! */ if (s_ver[strspn (s_ver, ".0123456789")] != '\0') return FALSE; s_ver_tokens = g_strsplit (s_ver, ".", -1); n_tokens = g_strv_length (s_ver_tokens); if (n_tokens == 0 || n_tokens > 3) return FALSE; v_maj = _nm_utils_ascii_str_to_int64 (s_ver_tokens[0], 10, 0, 0xFFFF, -1); if (v_maj < 0) return FALSE; if (n_tokens >= 2) { v_min = _nm_utils_ascii_str_to_int64 (s_ver_tokens[1], 10, 0, 0xFF, -1); if (v_min < 0) return FALSE; } if (n_tokens >= 3) { v_mic = _nm_utils_ascii_str_to_int64 (s_ver_tokens[2], 10, 0, 0xFF, -1); if (v_mic < 0) return FALSE; } nm_decode_version (cur_nm_version, &c_maj, &c_min, &c_mic); #define CHECK_AND_RETURN_FALSE(cur, val, tag, is_last_digit) \ G_STMT_START { \ if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MIN)) { \ if (cur < val) \ return FALSE; \ } else if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MAX)) { \ if (cur > val) \ return FALSE; \ } else { \ if (cur != val) \ return FALSE; \ } \ if (!(is_last_digit)) { \ if (cur != val) \ return FALSE; \ } \ } G_STMT_END if (v_mic >= 0) CHECK_AND_RETURN_FALSE (c_mic, v_mic, tag, TRUE); if (v_min >= 0) CHECK_AND_RETURN_FALSE (c_min, v_min, tag, v_mic < 0); CHECK_AND_RETURN_FALSE (c_maj, v_maj, tag, v_min < 0); return TRUE; } NMMatchSpecMatchType nm_match_spec_config (const GSList *specs, guint cur_nm_version, const char *env) { const GSList *iter; NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH; if (!specs) return NM_MATCH_SPEC_NO_MATCH; for (iter = specs; iter; iter = g_slist_next (iter)) { const char *spec_str = iter->data; gboolean except; gboolean v_match; if (!spec_str || !*spec_str) continue; spec_str = match_except (spec_str, &except); if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION)) v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION, cur_nm_version); else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN)) v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN, cur_nm_version); else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX)) v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX, cur_nm_version); else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_ENV)) v_match = env && env[0] && !strcmp (spec_str, env); else continue; if (v_match) { if (except) return NM_MATCH_SPEC_NEG_MATCH; match = NM_MATCH_SPEC_MATCH; } } return match; } #undef _MATCH_CHECK /** * nm_match_spec_split: * @value: the string of device specs * * Splits the specs from the string and returns them as individual * entries in a #GSList. * * It does not validate any specs, it basically just does a special * strsplit with ',' or ';' as separators and supporting '\\' as * escape character. * * Leading and trailing spaces of each entry are removed. But the user * can preserve them by specifying "\\s has 2 leading" or "has 2 trailing \\s". * * Specs can have a qualifier like "interface-name:". We still don't strip * any whitespace after the colon, so "interface-name: X" matches an interface * named " X". * * Returns: (transfer full): the list of device specs. */ GSList * nm_match_spec_split (const char *value) { char *string_value, *p, *q0, *q; GSList *pieces = NULL; int trailing_ws; if (!value || !*value) return NULL; /* Copied from glibs g_key_file_parse_value_as_string() function * and adjusted. */ string_value = g_new (gchar, strlen (value) + 1); p = (gchar *) value; /* skip over leading whitespace */ while (g_ascii_isspace (*p)) p++; q0 = q = string_value; trailing_ws = 0; while (*p) { if (*p == '\\') { p++; switch (*p) { case 's': *q = ' '; break; case 'n': *q = '\n'; break; case 't': *q = '\t'; break; case 'r': *q = '\r'; break; case '\\': *q = '\\'; break; case '\0': break; default: if (NM_IN_SET (*p, ',', ';')) *q = *p; else { *q++ = '\\'; *q = *p; } break; } if (*p == '\0') break; p++; trailing_ws = 0; } else { *q = *p; if (*p == '\0') break; if (g_ascii_isspace (*p)) { trailing_ws++; p++; } else if (NM_IN_SET (*p, ',', ';')) { if (q0 < q - trailing_ws) pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws)); q0 = q + 1; p++; trailing_ws = 0; while (g_ascii_isspace (*p)) p++; } else p++; } q++; } *q = '\0'; if (q0 < q - trailing_ws) pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws)); g_free (string_value); return g_slist_reverse (pieces); } /** * nm_match_spec_join: * @specs: the device specs to join * * This is based on g_key_file_parse_string_as_value(), analog to * nm_match_spec_split() which is based on g_key_file_parse_value_as_string(). * * Returns: (transfer full): a joined list of device specs that can be * split again with nm_match_spec_split(). Note that * nm_match_spec_split (nm_match_spec_join (specs)) yields the original * result (which is not true the other way around because there are multiple * ways to encode the same joined specs string). */ char * nm_match_spec_join (GSList *specs) { const char *p; GString *str; str = g_string_new (""); for (; specs; specs = specs->next) { p = specs->data; if (!p || !*p) continue; if (str->len > 0) g_string_append_c (str, ','); /* escape leading whitespace */ switch (*p) { case ' ': g_string_append (str, "\\s"); p++; break; case '\t': g_string_append (str, "\\t"); p++; break; } for (; *p; p++) { switch (*p) { case '\n': g_string_append (str, "\\n"); break; case '\r': g_string_append (str, "\\r"); break; case '\\': g_string_append (str, "\\\\"); break; case ',': g_string_append (str, "\\,"); break; case ';': g_string_append (str, "\\;"); break; default: g_string_append_c (str, *p); break; } } /* escape trailing whitespaces */ switch (str->str[str->len - 1]) { case ' ': g_string_overwrite (str, str->len - 1, "\\s"); break; case '\t': g_string_overwrite (str, str->len - 1, "\\t"); break; } } return g_string_free (str, FALSE); } /*****************************************************************************/ char * nm_utils_new_vlan_name (const char *parent_iface, guint32 vlan_id) { guint id_len; gsize parent_len; char *ifname; g_return_val_if_fail (parent_iface && *parent_iface, NULL); if (vlan_id < 10) id_len = 2; else if (vlan_id < 100) id_len = 3; else if (vlan_id < 1000) id_len = 4; else { g_return_val_if_fail (vlan_id < 4095, NULL); id_len = 5; } ifname = g_new (char, IFNAMSIZ); parent_len = strlen (parent_iface); parent_len = MIN (parent_len, IFNAMSIZ - 1 - id_len); memcpy (ifname, parent_iface, parent_len); g_snprintf (&ifname[parent_len], IFNAMSIZ - parent_len, ".%u", vlan_id); return ifname; } /* nm_utils_new_infiniband_name: * @name: the output-buffer where the value will be written. Must be * not %NULL and point to a string buffer of at least IFNAMSIZ bytes. * @parent_name: the parent interface name * @p_key: the partition key. * * Returns: the infiniband name will be written to @name and @name * is returned. */ const char * nm_utils_new_infiniband_name (char *name, const char *parent_name, int p_key) { g_return_val_if_fail (name, NULL); g_return_val_if_fail (parent_name && parent_name[0], NULL); g_return_val_if_fail (strlen (parent_name) < IFNAMSIZ, NULL); /* technically, p_key of 0x0000 and 0x8000 is not allowed either. But we don't * want to assert against that in nm_utils_new_infiniband_name(). So be more * resilient here, and accept those. */ g_return_val_if_fail (p_key >= 0 && p_key <= 0xffff, NULL); /* If parent+suffix is too long, kernel would just truncate * the name. We do the same. See ipoib_vlan_add(). */ g_snprintf (name, IFNAMSIZ, "%s.%04x", parent_name, p_key); return name; } /*****************************************************************************/ gboolean nm_utils_resolve_conf_parse (int addr_family, const char *rc_contents, GArray *nameservers, GPtrArray *dns_options) { guint i; gboolean changed = FALSE; gs_free const char **lines = NULL; gsize l; g_return_val_if_fail (rc_contents, FALSE); g_return_val_if_fail (nameservers, FALSE); g_return_val_if_fail ( ( addr_family == AF_INET && g_array_get_element_size (nameservers) == sizeof (in_addr_t)) || ( addr_family == AF_INET6 && g_array_get_element_size (nameservers) == sizeof (struct in6_addr)), FALSE); lines = nm_utils_strsplit_set (rc_contents, "\r\n"); if (!lines) return FALSE; /* like glibc's MATCH() macro in resolv/res_init.c. */ #define RC_MATCH(line, option, out_arg) \ ({ \ const char *const _line = (line); \ gboolean _match = FALSE; \ \ if ( (strncmp (_line, option, NM_STRLEN (option)) == 0) \ && (NM_IN_SET (_line[NM_STRLEN (option)], ' ', '\t'))) { \ _match = TRUE;\ (out_arg) = &_line[NM_STRLEN (option) + 1]; \ } \ _match; \ }) for (l = 0; lines[l]; l++) { const char *const line = lines[l]; const char *s = NULL; if (RC_MATCH (line, "nameserver", s)) { gs_free char *s_cpy = NULL; NMIPAddr ns; s = nm_strstrip_avoid_copy (s, &s_cpy); if (inet_pton (addr_family, s, &ns) != 1) continue; if (addr_family == AF_INET) { if (!ns.addr4) continue; for (i = 0; i < nameservers->len; i++) { if (g_array_index (nameservers, guint32, i) == ns.addr4) break; } } else { if (IN6_IS_ADDR_UNSPECIFIED (&ns.addr6)) continue; for (i = 0; i < nameservers->len; i++) { struct in6_addr *t = &g_array_index (nameservers, struct in6_addr, i); if (IN6_ARE_ADDR_EQUAL (t, &ns.addr6)) break; } } if (i == nameservers->len) { g_array_append_val (nameservers, ns); changed = TRUE; } continue; } if (RC_MATCH (line, "options", s)) { if (!dns_options) continue; s = nm_str_skip_leading_spaces (s); if (s[0]) { gs_free const char **tokens = NULL; gsize i_tokens; tokens = nm_utils_strsplit_set (s, " \t"); for (i_tokens = 0; tokens && tokens[i_tokens]; i_tokens++) { gs_free char *t = g_strstrip (g_strdup (tokens[i_tokens])); if ( _nm_utils_dns_option_validate (t, NULL, NULL, addr_family == AF_INET6, _nm_utils_dns_option_descs) && _nm_utils_dns_option_find_idx (dns_options, t) < 0) { g_ptr_array_add (dns_options, g_steal_pointer (&t)); changed = TRUE; } } } continue; } } return changed; } /*****************************************************************************/ /** * nm_utils_cmp_connection_by_autoconnect_priority: * @a: * @b: * * compare connections @a and @b for their autoconnect property * (with sorting the connection that has autoconnect enabled before * the other) * If they both have autoconnect enabled, sort them depending on their * autoconnect-priority (with the higher priority first). * * If their autoconnect/autoconnect-priority is the same, 0 is returned. * That is, they compare equal. * * Returns: -1, 0, or 1 */ int nm_utils_cmp_connection_by_autoconnect_priority (NMConnection *a, NMConnection *b) { NMSettingConnection *a_s_con; NMSettingConnection *b_s_con; int a_ap, b_ap; gboolean can_autoconnect; if (a == b) return 0; if (!a) return 1; if (!b) return -1; a_s_con = nm_connection_get_setting_connection (a); b_s_con = nm_connection_get_setting_connection (b); if (!a_s_con) return !b_s_con ? 0 : 1; if (!b_s_con) return -1; can_autoconnect = !!nm_setting_connection_get_autoconnect (a_s_con); if (can_autoconnect != (!!nm_setting_connection_get_autoconnect (b_s_con))) return can_autoconnect ? -1 : 1; if (can_autoconnect) { a_ap = nm_setting_connection_get_autoconnect_priority (a_s_con); b_ap = nm_setting_connection_get_autoconnect_priority (b_s_con); if (a_ap != b_ap) return (a_ap > b_ap) ? -1 : 1; } return 0; } /*****************************************************************************/ static gint64 monotonic_timestamp_offset_sec; static int monotonic_timestamp_clock_mode = 0; static void monotonic_timestamp_get (struct timespec *tp) { int clock_mode = 0; int err = 0; switch (monotonic_timestamp_clock_mode) { case 0: /* the clock is not yet initialized (first run) */ err = clock_gettime (CLOCK_BOOTTIME, tp); if (err == -1 && errno == EINVAL) { clock_mode = 2; err = clock_gettime (CLOCK_MONOTONIC, tp); } else clock_mode = 1; break; case 1: /* default, return CLOCK_BOOTTIME */ err = clock_gettime (CLOCK_BOOTTIME, tp); break; case 2: /* fallback, return CLOCK_MONOTONIC. Kernels prior to 2.6.39 * (released on 18 May, 2011) don't support CLOCK_BOOTTIME. */ err = clock_gettime (CLOCK_MONOTONIC, tp); break; } g_assert (err == 0); (void)err; g_assert (tp->tv_nsec >= 0 && tp->tv_nsec < NM_UTILS_NS_PER_SECOND); if (G_LIKELY (clock_mode == 0)) return; /* Calculate an offset for the time stamp. * * We always want positive values, because then we can initialize * a timestamp with 0 and be sure, that it will be less then any * value nm_utils_get_monotonic_timestamp_*() might return. * For this to be true also for nm_utils_get_monotonic_timestamp_s() at * early boot, we have to shift the timestamp to start counting at * least from 1 second onward. * * Another advantage of shifting is, that this way we make use of the whole 31 bit * range of signed int, before the time stamp for nm_utils_get_monotonic_timestamp_s() * wraps (~68 years). **/ monotonic_timestamp_offset_sec = (- ((gint64) tp->tv_sec)) + 1; monotonic_timestamp_clock_mode = clock_mode; if (nm_logging_enabled (LOGL_DEBUG, LOGD_CORE)) { time_t now = time (NULL); struct tm tm; char s[255]; strftime (s, sizeof (s), "%Y-%m-%d %H:%M:%S", localtime_r (&now, &tm)); nm_log_dbg (LOGD_CORE, "monotonic timestamp started counting 1.%09ld seconds ago with " "an offset of %lld.0 seconds to %s (local time is %s)", tp->tv_nsec, (long long) -monotonic_timestamp_offset_sec, clock_mode == 1 ? "CLOCK_BOOTTIME" : "CLOCK_MONOTONIC", s); } } /** * nm_utils_get_monotonic_timestamp_ns: * * Returns: a monotonically increasing time stamp in nanoseconds, * starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME. * * The returned value will start counting at an undefined point * in the past and will always be positive. * * All the nm_utils_get_monotonic_timestamp_*s functions return the same * timestamp but in different scales (nsec, usec, msec, sec). **/ gint64 nm_utils_get_monotonic_timestamp_ns (void) { struct timespec tp = { 0 }; monotonic_timestamp_get (&tp); /* Although the result will always be positive, we return a signed * integer, which makes it easier to calculate time differences (when * you want to subtract signed values). **/ return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * NM_UTILS_NS_PER_SECOND + tp.tv_nsec; } /** * nm_utils_get_monotonic_timestamp_us: * * Returns: a monotonically increasing time stamp in microseconds, * starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME. * * The returned value will start counting at an undefined point * in the past and will always be positive. * * All the nm_utils_get_monotonic_timestamp_*s functions return the same * timestamp but in different scales (nsec, usec, msec, sec). **/ gint64 nm_utils_get_monotonic_timestamp_us (void) { struct timespec tp = { 0 }; monotonic_timestamp_get (&tp); /* Although the result will always be positive, we return a signed * integer, which makes it easier to calculate time differences (when * you want to subtract signed values). **/ return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) G_USEC_PER_SEC) + (tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/G_USEC_PER_SEC)); } /** * nm_utils_get_monotonic_timestamp_ms: * * Returns: a monotonically increasing time stamp in milliseconds, * starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME. * * The returned value will start counting at an undefined point * in the past and will always be positive. * * All the nm_utils_get_monotonic_timestamp_*s functions return the same * timestamp but in different scales (nsec, usec, msec, sec). **/ gint64 nm_utils_get_monotonic_timestamp_ms (void) { struct timespec tp = { 0 }; monotonic_timestamp_get (&tp); /* Although the result will always be positive, we return a signed * integer, which makes it easier to calculate time differences (when * you want to subtract signed values). **/ return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) 1000) + (tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/1000)); } /** * nm_utils_get_monotonic_timestamp_s: * * Returns: nm_utils_get_monotonic_timestamp_ms() in seconds (throwing * away sub second parts). The returned value will always be positive. * * This value wraps after roughly 68 years which should be fine for any * practical purpose. * * All the nm_utils_get_monotonic_timestamp_*s functions return the same * timestamp but in different scales (nsec, usec, msec, sec). **/ gint32 nm_utils_get_monotonic_timestamp_s (void) { struct timespec tp = { 0 }; monotonic_timestamp_get (&tp); return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec); } typedef struct { const char *name; NMSetting *setting; NMSetting *diff_base_setting; GHashTable *setting_diff; } LogConnectionSettingData; typedef struct { const char *item_name; NMSettingDiffResult diff_result; } LogConnectionSettingItem; static gint _log_connection_sort_hashes_fcn (gconstpointer a, gconstpointer b) { const LogConnectionSettingData *v1 = a; const LogConnectionSettingData *v2 = b; NMSettingPriority p1, p2; NMSetting *s1, *s2; s1 = v1->setting ? v1->setting : v1->diff_base_setting; s2 = v2->setting ? v2->setting : v2->diff_base_setting; g_assert (s1 && s2); p1 = _nm_setting_get_setting_priority (s1); p2 = _nm_setting_get_setting_priority (s2); if (p1 != p2) return p1 > p2 ? 1 : -1; return strcmp (v1->name, v2->name); } static GArray * _log_connection_sort_hashes (NMConnection *connection, NMConnection *diff_base, GHashTable *connection_diff) { GHashTableIter iter; GArray *sorted_hashes; LogConnectionSettingData setting_data; sorted_hashes = g_array_sized_new (TRUE, FALSE, sizeof (LogConnectionSettingData), g_hash_table_size (connection_diff)); g_hash_table_iter_init (&iter, connection_diff); while (g_hash_table_iter_next (&iter, (gpointer) &setting_data.name, (gpointer) &setting_data.setting_diff)) { setting_data.setting = nm_connection_get_setting_by_name (connection, setting_data.name); setting_data.diff_base_setting = diff_base ? nm_connection_get_setting_by_name (diff_base, setting_data.name) : NULL; g_assert (setting_data.setting || setting_data.diff_base_setting); g_array_append_val (sorted_hashes, setting_data); } g_array_sort (sorted_hashes, _log_connection_sort_hashes_fcn); return sorted_hashes; } static gint _log_connection_sort_names_fcn (gconstpointer a, gconstpointer b) { const LogConnectionSettingItem *v1 = a; const LogConnectionSettingItem *v2 = b; /* we want to first show the items, that disappeared, then the one that changed and * then the ones that were added. */ if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) != (v2->diff_result & NM_SETTING_DIFF_RESULT_IN_A)) return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) ? -1 : 1; if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) != (v2->diff_result & NM_SETTING_DIFF_RESULT_IN_B)) return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) ? 1 : -1; return strcmp (v1->item_name, v2->item_name); } static char * _log_connection_get_property (NMSetting *setting, const char *name) { GValue val = G_VALUE_INIT; char *s; g_return_val_if_fail (setting, NULL); if ( !NM_IS_SETTING_VPN (setting) && nm_setting_get_secret_flags (setting, name, NULL, NULL)) return g_strdup ("****"); if (!_nm_setting_get_property (setting, name, &val)) g_return_val_if_reached (FALSE); if (G_VALUE_HOLDS_STRING (&val)) { const char *val_s; val_s = g_value_get_string (&val); if (!val_s) { /* for NULL, we want to return the unquoted string "NULL". */ s = g_strdup ("NULL"); } else { char *escaped = g_strescape (val_s, "'"); s = g_strdup_printf ("'%s'", escaped); g_free (escaped); } } else { s = g_strdup_value_contents (&val); if (s == NULL) s = g_strdup ("NULL"); else { char *escaped = g_strescape (s, "'"); g_free (s); s = escaped; } } g_value_unset(&val); return s; } static void _log_connection_sort_names (LogConnectionSettingData *setting_data, GArray *sorted_names) { GHashTableIter iter; LogConnectionSettingItem item; gpointer p; g_array_set_size (sorted_names, 0); g_hash_table_iter_init (&iter, setting_data->setting_diff); while (g_hash_table_iter_next (&iter, (gpointer) &item.item_name, &p)) { item.diff_result = GPOINTER_TO_UINT (p); g_array_append_val (sorted_names, item); } g_array_sort (sorted_names, _log_connection_sort_names_fcn); } void nm_utils_log_connection_diff (NMConnection *connection, NMConnection *diff_base, guint32 level, guint64 domain, const char *name, const char *prefix) { GHashTable *connection_diff = NULL; GArray *sorted_hashes; GArray *sorted_names = NULL; int i, j; gboolean connection_diff_are_same; gboolean print_header = TRUE; gboolean print_setting_header; GString *str1; g_return_if_fail (NM_IS_CONNECTION (connection)); g_return_if_fail (!diff_base || (NM_IS_CONNECTION (diff_base) && diff_base != connection)); /* For VPN setting types, this is broken, because we cannot (generically) print the content of data/secrets. Bummer... */ if (!nm_logging_enabled (level, domain)) return; if (!prefix) prefix = ""; if (!name) name = ""; connection_diff_are_same = nm_connection_diff (connection, diff_base, NM_SETTING_COMPARE_FLAG_EXACT | NM_SETTING_COMPARE_FLAG_DIFF_RESULT_NO_DEFAULT, &connection_diff); if (connection_diff_are_same) { const char *t1, *t2; t1 = nm_connection_get_connection_type (connection); if (diff_base) { t2 = nm_connection_get_connection_type (diff_base); nm_log (level, domain, NULL, NULL, "%sconnection '%s' (%p/%s/%s%s%s and %p/%s/%s%s%s): no difference", prefix, name, connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1), diff_base, G_OBJECT_TYPE_NAME (diff_base), NM_PRINT_FMT_QUOTE_STRING (t2)); } else { nm_log (level, domain, NULL, NULL, "%sconnection '%s' (%p/%s/%s%s%s): no properties set", prefix, name, connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1)); } g_assert (!connection_diff); return; } /* FIXME: it doesn't nicely show the content of NMSettingVpn, becuase nm_connection_diff() does not * expand the hash values. */ sorted_hashes = _log_connection_sort_hashes (connection, diff_base, connection_diff); if (sorted_hashes->len <= 0) goto out; sorted_names = g_array_new (FALSE, FALSE, sizeof (LogConnectionSettingItem)); str1 = g_string_new (NULL); for (i = 0; i < sorted_hashes->len; i++) { LogConnectionSettingData *setting_data = &g_array_index (sorted_hashes, LogConnectionSettingData, i); _log_connection_sort_names (setting_data, sorted_names); print_setting_header = TRUE; for (j = 0; j < sorted_names->len; j++) { char *str_conn, *str_diff; LogConnectionSettingItem *item = &g_array_index (sorted_names, LogConnectionSettingItem, j); str_conn = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_A) ? _log_connection_get_property (setting_data->setting, item->item_name) : NULL; str_diff = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_B) ? _log_connection_get_property (setting_data->diff_base_setting, item->item_name) : NULL; if (print_header) { GError *err_verify = NULL; const char *path = nm_connection_get_path (connection); const char *t1, *t2; t1 = nm_connection_get_connection_type (connection); if (diff_base) { t2 = nm_connection_get_connection_type (diff_base); nm_log (level, domain, NULL, NULL, "%sconnection '%s' (%p/%s/%s%s%s < %p/%s/%s%s%s)%s%s%s:", prefix, name, connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1), diff_base, G_OBJECT_TYPE_NAME (diff_base), NM_PRINT_FMT_QUOTE_STRING (t2), NM_PRINT_FMT_QUOTED (path, " [", path, "]", "")); } else { nm_log (level, domain, NULL, NULL, "%sconnection '%s' (%p/%s/%s%s%s):%s%s%s", prefix, name, connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1), NM_PRINT_FMT_QUOTED (path, " [", path, "]", "")); } print_header = FALSE; if (!nm_connection_verify (connection, &err_verify)) { nm_log (level, domain, NULL, NULL, "%sconnection %p does not verify: %s", prefix, connection, err_verify->message); g_clear_error (&err_verify); } } #define _NM_LOG_ALIGN "-25" if (print_setting_header) { if (diff_base) { if (setting_data->setting && setting_data->diff_base_setting) g_string_printf (str1, "%p < %p", setting_data->setting, setting_data->diff_base_setting); else if (setting_data->diff_base_setting) g_string_printf (str1, "*missing* < %p", setting_data->diff_base_setting); else g_string_printf (str1, "%p < *missing*", setting_data->setting); nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s [ %s ]", prefix, setting_data->name, str1->str); } else nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s [ %p ]", prefix, setting_data->name, setting_data->setting); print_setting_header = FALSE; } g_string_printf (str1, "%s.%s", setting_data->name, item->item_name); switch (item->diff_result & (NM_SETTING_DIFF_RESULT_IN_A | NM_SETTING_DIFF_RESULT_IN_B)) { case NM_SETTING_DIFF_RESULT_IN_B: nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s < %s", prefix, str1->str, str_diff ? str_diff : "NULL"); break; case NM_SETTING_DIFF_RESULT_IN_A: nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s = %s", prefix, str1->str, str_conn ? str_conn : "NULL"); break; default: nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s = %s < %s", prefix, str1->str, str_conn ? str_conn : "NULL", str_diff ? str_diff : "NULL"); break; #undef _NM_LOG_ALIGN } g_free (str_conn); g_free (str_diff); } } g_array_free (sorted_names, TRUE); g_string_free (str1, TRUE); out: g_hash_table_destroy (connection_diff); g_array_free (sorted_hashes, TRUE); } /** * nm_utils_monotonic_timestamp_as_boottime: * @timestamp: the monotonic-timestamp that should be converted into CLOCK_BOOTTIME. * @timestamp_ns_per_tick: How many nano seconds make one unit of @timestamp? E.g. if * @timestamp is in unit seconds, pass %NM_UTILS_NS_PER_SECOND; @timestamp in nano * seconds, pass 1; @timestamp in milli seconds, pass %NM_UTILS_NS_PER_SECOND/1000; etc. * * Returns: the monotonic-timestamp as CLOCK_BOOTTIME, as returned by clock_gettime(). * The unit is the same as the passed in @timestamp basd on @timestamp_ns_per_tick. * E.g. if you passed @timestamp in as seconds, it will return boottime in seconds. * If @timestamp is a non-positive, it returns -1. Note that a (valid) monotonic-timestamp * is always positive. * * On older kernels that don't support CLOCK_BOOTTIME, the returned time is instead CLOCK_MONOTONIC. **/ gint64 nm_utils_monotonic_timestamp_as_boottime (gint64 timestamp, gint64 timestamp_ns_per_tick) { gint64 offset; /* only support ns-per-tick being a multiple of 10. */ g_return_val_if_fail (timestamp_ns_per_tick == 1 || (timestamp_ns_per_tick > 0 && timestamp_ns_per_tick <= NM_UTILS_NS_PER_SECOND && timestamp_ns_per_tick % 10 == 0), -1); /* Check that the timestamp is in a valid range. */ g_return_val_if_fail (timestamp >= 0, -1); /* if the caller didn't yet ever fetch a monotonic-timestamp, he cannot pass any meaningful * value (because he has no idea what these timestamps would be). That would be a bug. */ g_return_val_if_fail (monotonic_timestamp_clock_mode != 0, -1); /* calculate the offset of monotonic-timestamp to boottime. offset_s is <= 1. */ offset = monotonic_timestamp_offset_sec * (NM_UTILS_NS_PER_SECOND / timestamp_ns_per_tick); /* check for overflow. */ g_return_val_if_fail (offset > 0 || timestamp < G_MAXINT64 + offset, G_MAXINT64); return timestamp - offset; } #define IPV6_PROPERTY_DIR "/proc/sys/net/ipv6/conf/" #define IPV4_PROPERTY_DIR "/proc/sys/net/ipv4/conf/" G_STATIC_ASSERT (sizeof (IPV4_PROPERTY_DIR) == sizeof (IPV6_PROPERTY_DIR)); G_STATIC_ASSERT (NM_STRLEN (IPV6_PROPERTY_DIR) + IFNAMSIZ + 60 == NM_UTILS_SYSCTL_IP_CONF_PATH_BUFSIZE); /** * nm_utils_sysctl_ip_conf_path: * @addr_family: either AF_INET or AF_INET6. * @buf: the output buffer where to write the path. It * must be at least NM_UTILS_SYSCTL_IP_CONF_PATH_BUFSIZE bytes * long. * @ifname: an interface name * @property: a property name * * Returns: the path to IPv6 property @property on @ifname. Note that * this returns the input argument @buf. */ const char * nm_utils_sysctl_ip_conf_path (int addr_family, char *buf, const char *ifname, const char *property) { int len; nm_assert (buf); nm_assert_addr_family (addr_family); g_assert (nm_utils_is_valid_iface_name (ifname, NULL)); property = NM_ASSERT_VALID_PATH_COMPONENT (property); len = g_snprintf (buf, NM_UTILS_SYSCTL_IP_CONF_PATH_BUFSIZE, "%s%s/%s", addr_family == AF_INET6 ? IPV6_PROPERTY_DIR : IPV4_PROPERTY_DIR, ifname, property); g_assert (len < NM_UTILS_SYSCTL_IP_CONF_PATH_BUFSIZE - 1); return buf; } gboolean nm_utils_sysctl_ip_conf_is_path (int addr_family, const char *path, const char *ifname, const char *property) { g_return_val_if_fail (path, FALSE); NM_ASSERT_VALID_PATH_COMPONENT (property); g_assert (!ifname || nm_utils_is_valid_iface_name (ifname, NULL)); if (addr_family == AF_INET) { if (!g_str_has_prefix (path, IPV4_PROPERTY_DIR)) return FALSE; path += NM_STRLEN (IPV4_PROPERTY_DIR); } else if (addr_family == AF_INET6) { if (!g_str_has_prefix (path, IPV6_PROPERTY_DIR)) return FALSE; path += NM_STRLEN (IPV6_PROPERTY_DIR); } else g_return_val_if_reached (FALSE); if (ifname) { if (!g_str_has_prefix (path, ifname)) return FALSE; path += strlen (ifname); if (path[0] != '/') return FALSE; path++; } else { const char *slash; char buf[IFNAMSIZ]; gsize l; slash = strchr (path, '/'); if (!slash) return FALSE; l = slash - path; if (l >= IFNAMSIZ) return FALSE; memcpy (buf, path, l); buf[l] = '\0'; if (!nm_utils_is_valid_iface_name (buf, NULL)) return FALSE; path = slash + 1; } if (!nm_streq (path, property)) return FALSE; return TRUE; } gboolean nm_utils_is_valid_path_component (const char *name) { const char *n; if (name == NULL || name[0] == '\0') return FALSE; if (name[0] == '.') { if (name[1] == '\0') return FALSE; if (name[1] == '.' && name[2] == '\0') return FALSE; } n = name; do { if (*n == '/') return FALSE; } while (*(++n) != '\0'); return TRUE; } const char * NM_ASSERT_VALID_PATH_COMPONENT (const char *name) { if (G_LIKELY (nm_utils_is_valid_path_component (name))) return name; nm_log_err (LOGD_CORE, "Failed asserting path component: %s%s%s", NM_PRINT_FMT_QUOTED (name, "\"", name, "\"", "(null)")); g_error ("FATAL: Failed asserting path component: %s%s%s", NM_PRINT_FMT_QUOTED (name, "\"", name, "\"", "(null)")); g_assert_not_reached (); } gboolean nm_utils_is_specific_hostname (const char *name) { if (!name) return FALSE; if ( strcmp (name, "(none)") && strcmp (name, "localhost") && strcmp (name, "localhost6") && strcmp (name, "localhost.localdomain") && strcmp (name, "localhost6.localdomain6")) return TRUE; return FALSE; } /*****************************************************************************/ gboolean nm_utils_machine_id_parse (const char *id_str, /*uuid_t*/ guchar *out_uuid) { int i; guint8 v0, v1; if (!id_str) return FALSE; for (i = 0; i < 32; i++) { if (!g_ascii_isxdigit (id_str[i])) return FALSE; } if (id_str[i] != '\0') return FALSE; if (out_uuid) { for (i = 0; i < 16; i++) { v0 = g_ascii_xdigit_value (*(id_str++)); v1 = g_ascii_xdigit_value (*(id_str++)); out_uuid[i] = (v0 << 4) + v1; } } return TRUE; } char * nm_utils_machine_id_read (void) { gs_free char *contents = NULL; int i; /* Get the machine ID from /etc/machine-id; it's always in /etc no matter * where our configured SYSCONFDIR is. Alternatively, it might be in * LOCALSTATEDIR /lib/dbus/machine-id. */ if ( !g_file_get_contents ("/etc/machine-id", &contents, NULL, NULL) && !g_file_get_contents (LOCALSTATEDIR "/lib/dbus/machine-id", &contents, NULL, NULL)) return FALSE; contents = g_strstrip (contents); for (i = 0; i < 32; i++) { if (!g_ascii_isxdigit (contents[i])) return FALSE; if (contents[i] >= 'A' && contents[i] <= 'F') { /* canonicalize to lower-case */ contents[i] = 'a' + (contents[i] - 'A'); } } if (contents[i] != '\0') return FALSE; return g_steal_pointer (&contents); } /*****************************************************************************/ _nm_printf (3, 4) static int _get_contents_error (GError **error, int errsv, const char *format, ...) { if (errsv < 0) errsv = -errsv; else if (!errsv) errsv = errno; if (error) { char *msg; va_list args; va_start (args, format); msg = g_strdup_vprintf (format, args); va_end (args); g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "%s: %s", msg, g_strerror (errsv)); g_free (msg); } return -errsv; } /** * nm_utils_fd_get_contents: * @fd: open file descriptor to read. The fd will not be closed, * but don't rely on it's state afterwards. * @close_fd: if %TRUE, @fd will be closed by the function. * Passing %TRUE here might safe a syscall for dup(). * @max_length: allocate at most @max_length bytes. If the * file is larger, reading will fail. Set to zero to use * a very large default. * * WARNING: @max_length is here to avoid a crash for huge/unlimited files. * For example, stat(/sys/class/net/enp0s25/ifindex) gives a filesize of * 4K, although the actual real is small. @max_length is the memory * allocated in the process of reading the file, thus it must be at least * the size reported by fstat. * If you set it to 1K, read will fail because fstat() claims the * file is larger. * * @contents: the output buffer with the file read. It is always * NUL terminated. The buffer is at most @max_length long, including * the NUL byte. That is, it reads only files up to a length of * @max_length - 1 bytes. * @length: optional output argument of the read file size. * * A reimplementation of g_file_get_contents() with a few differences: * - accepts an open fd, instead of a path name. This allows you to * use openat(). * - limits the maxium filesize to max_length. * * Returns: a negative error code on failure. */ int nm_utils_fd_get_contents (int fd, gboolean close_fd, gsize max_length, char **contents, gsize *length, GError **error) { nm_auto_close int fd_keeper = close_fd ? fd : -1; struct stat stat_buf; gs_free char *str = NULL; g_return_val_if_fail (fd >= 0, -EINVAL); g_return_val_if_fail (contents, -EINVAL); g_return_val_if_fail (!error || !*error, -EINVAL); if (fstat (fd, &stat_buf) < 0) return _get_contents_error (error, 0, "failure during fstat"); if (!max_length) { /* default to a very large size, but not extreme */ max_length = 2 * 1024 * 1024; } if ( stat_buf.st_size > 0 && S_ISREG (stat_buf.st_mode)) { const gsize n_stat = stat_buf.st_size; ssize_t n_read; if (n_stat > max_length - 1) return _get_contents_error (error, EMSGSIZE, "file too large (%zu+1 bytes with maximum %zu bytes)", n_stat, max_length); str = g_try_malloc (n_stat + 1); if (!str) return _get_contents_error (error, ENOMEM, "failure to allocate buffer of %zu+1 bytes", n_stat); n_read = nm_utils_fd_read_loop (fd, str, n_stat, TRUE); if (n_read < 0) return _get_contents_error (error, n_read, "error reading %zu bytes from file descriptor", n_stat); str[n_read] = '\0'; if (n_read < n_stat) { char *tmp; tmp = g_try_realloc (str, n_read + 1); if (!tmp) return _get_contents_error (error, ENOMEM, "failure to reallocate buffer with %zu bytes", n_read + 1); str = tmp; } NM_SET_OUT (length, n_read); } else { nm_auto_fclose FILE *f = NULL; char buf[4096]; gsize n_have, n_alloc; int fd2; if (fd_keeper >= 0) fd2 = nm_steal_fd (&fd_keeper); else { fd2 = fcntl (fd, F_DUPFD_CLOEXEC, 0); if (fd2 < 0) return _get_contents_error (error, 0, "error during dup"); } if (!(f = fdopen (fd2, "r"))) { nm_close (fd2); return _get_contents_error (error, 0, "failure during fdopen"); } n_have = 0; n_alloc = 0; while (!feof (f)) { int errsv; gsize n_read; n_read = fread (buf, 1, sizeof (buf), f); errsv = errno; if (ferror (f)) return _get_contents_error (error, errsv, "error during fread"); if ( n_have > G_MAXSIZE - 1 - n_read || n_have + n_read + 1 > max_length) { return _get_contents_error (error, EMSGSIZE, "file stream too large (%zu+1 bytes with maximum %zu bytes)", (n_have > G_MAXSIZE - 1 - n_read) ? G_MAXSIZE : n_have + n_read, max_length); } if (n_have + n_read + 1 >= n_alloc) { char *tmp; if (str) { if (n_alloc >= max_length / 2) n_alloc = max_length; else n_alloc *= 2; } else n_alloc = NM_MIN (n_read + 1, sizeof (buf)); tmp = g_try_realloc (str, n_alloc); if (!tmp) return _get_contents_error (error, ENOMEM, "failure to allocate buffer of %zu bytes", n_alloc); str = tmp; } memcpy (str + n_have, buf, n_read); n_have += n_read; } if (n_alloc == 0) str = g_new0 (gchar, 1); else { str[n_have] = '\0'; if (n_have + 1 < n_alloc) { char *tmp; tmp = g_try_realloc (str, n_have + 1); if (!tmp) return _get_contents_error (error, ENOMEM, "failure to truncate buffer to %zu bytes", n_have + 1); str = tmp; } } NM_SET_OUT (length, n_have); } *contents = g_steal_pointer (&str); return 0; } /** * nm_utils_file_get_contents: * @dirfd: optional file descriptor to use openat(). If negative, use plain open(). * @filename: the filename to open. Possibly relative to @dirfd. * @max_length: allocate at most @max_length bytes. * WARNING: see nm_utils_fd_get_contents() hint about @max_length. * @contents: the output buffer with the file read. It is always * NUL terminated. The buffer is at most @max_length long, including * the NUL byte. That is, it reads only files up to a length of * @max_length - 1 bytes. * @length: optional output argument of the read file size. * * A reimplementation of g_file_get_contents() with a few differences: * - accepts an @dirfd to open @filename relative to that path via openat(). * - limits the maxium filesize to max_length. * - uses O_CLOEXEC on internal file descriptor * * Returns: a negative error code on failure. */ int nm_utils_file_get_contents (int dirfd, const char *filename, gsize max_length, char **contents, gsize *length, GError **error) { int fd; int errsv; g_return_val_if_fail (filename && filename[0], -EINVAL); if (dirfd >= 0) { fd = openat (dirfd, filename, O_RDONLY | O_CLOEXEC); if (fd < 0) { errsv = errno; g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "Failed to open file \"%s\" with openat: %s", filename, g_strerror (errsv)); return -errsv; } } else { fd = open (filename, O_RDONLY | O_CLOEXEC); if (fd < 0) { errsv = errno; g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "Failed to open file \"%s\": %s", filename, g_strerror (errsv)); return -errsv; } } return nm_utils_fd_get_contents (fd, TRUE, max_length, contents, length, error); } /*****************************************************************************/ guint8 * nm_utils_secret_key_read (gsize *out_key_len, GError **error) { guint8 *secret_key = NULL; gsize key_len; /* out_key_len is not optional, because without it you cannot safely * access the returned memory. */ *out_key_len = 0; /* Let's try to load a saved secret key first. */ if (g_file_get_contents (NMSTATEDIR "/secret_key", (char **) &secret_key, &key_len, NULL)) { if (key_len < 16) { g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "Key is too short to be usable"); key_len = 0; } } else { mode_t key_mask; /* RFC7217 mandates the key SHOULD be at least 128 bits. * Let's use twice as much. */ key_len = 32; secret_key = g_malloc (key_len); if (!nm_utils_random_bytes (secret_key, key_len)) { g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "Can't get random data to generate secret key"); key_len = 0; goto out; } key_mask = umask (0077); if (!g_file_set_contents (NMSTATEDIR "/secret_key", (char *) secret_key, key_len, error)) { g_prefix_error (error, "Can't write " NMSTATEDIR "/secret_key: "); key_len = 0; } umask (key_mask); } out: if (key_len) { *out_key_len = key_len; return secret_key; } g_free (secret_key); return NULL; } /*****************************************************************************/ const char * nm_utils_get_boot_id (void) { static const char *boot_id; if (G_UNLIKELY (!boot_id)) { gs_free char *contents = NULL; nm_utils_file_get_contents (-1, "/proc/sys/kernel/random/boot_id", 0, &contents, NULL, NULL); if (contents) { g_strstrip (contents); if (contents[0]) { /* clone @contents because we keep @boot_id until the program * ends. * nm_utils_file_get_contents() likely allocated a larger * buffer chunk initially and (although using realloc to shrink * the buffer) it might not be best to keep this memory * around. */ boot_id = g_strdup (contents); } } if (!boot_id) boot_id = nm_utils_uuid_generate (); } return boot_id; } /*****************************************************************************/ /* Returns the "u" (universal/local) bit value for a Modified EUI-64 */ static gboolean get_gre_eui64_u_bit (guint32 addr) { static const struct { guint32 mask; guint32 result; } items[] = { { 0xff000000 }, { 0x7f000000 }, /* IPv4 loopback */ { 0xf0000000 }, { 0xe0000000 }, /* IPv4 multicast */ { 0xffffff00 }, { 0xe0000000 }, /* IPv4 local multicast */ { 0xffffffff }, { INADDR_BROADCAST }, /* limited broadcast */ { 0xff000000 }, { 0x00000000 }, /* zero net */ { 0xff000000 }, { 0x0a000000 }, /* private 10 (RFC3330) */ { 0xfff00000 }, { 0xac100000 }, /* private 172 */ { 0xffff0000 }, { 0xc0a80000 }, /* private 192 */ { 0xffff0000 }, { 0xa9fe0000 }, /* IPv4 link-local */ { 0xffffff00 }, { 0xc0586300 }, /* anycast 6-to-4 */ { 0xffffff00 }, { 0xc0000200 }, /* test 192 */ { 0xfffe0000 }, { 0xc6120000 }, /* test 198 */ }; guint i; for (i = 0; i < G_N_ELEMENTS (items); i++) { if ((addr & htonl (items[i].mask)) == htonl (items[i].result)) return 0x00; /* "local" scope */ } return 0x02; /* "universal" scope */ } /** * nm_utils_get_ipv6_interface_identifier: * @link_type: the hardware link type * @hwaddr: the hardware address of the interface * @hwaddr_len: the length (in bytes) of @hwaddr * @dev_id: the device identifier, if any * @out_iid: on success, filled with the interface identifier; on failure * zeroed out * * Constructs an interface identifier in "Modified EUI-64" format which is * suitable for constructing IPv6 addresses. Note that the identifier is * not obscured in any way (eg, RFC3041). * * Returns: %TRUE if the interface identifier could be constructed, %FALSE if * if could not be constructed. */ gboolean nm_utils_get_ipv6_interface_identifier (NMLinkType link_type, const guint8 *hwaddr, guint hwaddr_len, guint dev_id, NMUtilsIPv6IfaceId *out_iid) { guint32 addr; g_return_val_if_fail (hwaddr != NULL, FALSE); g_return_val_if_fail (hwaddr_len > 0, FALSE); g_return_val_if_fail (out_iid != NULL, FALSE); out_iid->id = 0; switch (link_type) { case NM_LINK_TYPE_INFINIBAND: /* Use the port GUID per http://tools.ietf.org/html/rfc4391#section-8, * making sure to set the 'u' bit to 1. The GUID is the lower 64 bits * of the IPoIB interface's hardware address. */ g_return_val_if_fail (hwaddr_len == INFINIBAND_ALEN, FALSE); memcpy (out_iid->id_u8, hwaddr + INFINIBAND_ALEN - 8, 8); out_iid->id_u8[0] |= 0x02; return TRUE; case NM_LINK_TYPE_GRE: case NM_LINK_TYPE_GRETAP: /* Hardware address is the network-endian IPv4 address */ g_return_val_if_fail (hwaddr_len == 4, FALSE); addr = * (guint32 *) hwaddr; out_iid->id_u8[0] = get_gre_eui64_u_bit (addr); out_iid->id_u8[1] = 0x00; out_iid->id_u8[2] = 0x5E; out_iid->id_u8[3] = 0xFE; memcpy (out_iid->id_u8 + 4, &addr, 4); return TRUE; default: if (hwaddr_len == ETH_ALEN) { /* Translate 48-bit MAC address to a 64-bit Modified EUI-64. See * http://tools.ietf.org/html/rfc4291#appendix-A and the Linux * kernel's net/ipv6/addrconf.c::ipv6_generate_eui64() function. */ out_iid->id_u8[0] = hwaddr[0]; out_iid->id_u8[1] = hwaddr[1]; out_iid->id_u8[2] = hwaddr[2]; if (dev_id) { out_iid->id_u8[3] = (dev_id >> 8) & 0xff; out_iid->id_u8[4] = dev_id & 0xff; } else { out_iid->id_u8[0] ^= 0x02; out_iid->id_u8[3] = 0xff; out_iid->id_u8[4] = 0xfe; } out_iid->id_u8[5] = hwaddr[3]; out_iid->id_u8[6] = hwaddr[4]; out_iid->id_u8[7] = hwaddr[5]; return TRUE; } break; } return FALSE; } /*****************************************************************************/ /** * nm_utils_ipv6_addr_set_interface_identifier: * @addr: output token encoded as %in6_addr * @iid: %NMUtilsIPv6IfaceId interface identifier * * Converts the %NMUtilsIPv6IfaceId to an %in6_addr (suitable for use * with Linux platform). This only copies the lower 8 bytes, ignoring * the /64 network prefix which is expected to be all-zero for a valid * token. */ void nm_utils_ipv6_addr_set_interface_identifier (struct in6_addr *addr, const NMUtilsIPv6IfaceId iid) { memcpy (addr->s6_addr + 8, &iid.id_u8, 8); } /** * nm_utils_ipv6_interface_identifier_get_from_addr: * @iid: output %NMUtilsIPv6IfaceId interface identifier set from the token * @addr: token encoded as %in6_addr * * Converts the %in6_addr encoded token (as used by Linux platform) to * the interface identifier. */ void nm_utils_ipv6_interface_identifier_get_from_addr (NMUtilsIPv6IfaceId *iid, const struct in6_addr *addr) { memcpy (iid, addr->s6_addr + 8, 8); } /** * nm_utils_ipv6_interface_identifier_get_from_token: * @iid: output %NMUtilsIPv6IfaceId interface identifier set from the token * @token: token encoded as string * * Converts the %in6_addr encoded token (as used in ip6 settings) to * the interface identifier. * * Returns: %TRUE if the @token is a valid token, %FALSE otherwise */ gboolean nm_utils_ipv6_interface_identifier_get_from_token (NMUtilsIPv6IfaceId *iid, const char *token) { struct in6_addr i6_token; g_return_val_if_fail (token, FALSE); if (!inet_pton (AF_INET6, token, &i6_token)) return FALSE; if (!_nm_utils_inet6_is_token (&i6_token)) return FALSE; nm_utils_ipv6_interface_identifier_get_from_addr (iid, &i6_token); return TRUE; } /** * nm_utils_inet6_interface_identifier_to_token: * @iid: %NMUtilsIPv6IfaceId interface identifier * @buf: the destination buffer or %NULL * * Converts the interface identifier to a string token. * If the destination buffer it set, set it is used to store the * resulting token, otherwise an internal static buffer is used. * The buffer needs to be %NM_UTILS_INET_ADDRSTRLEN characters long. * * Returns: a statically allocated array. Do not g_free(). */ const char * nm_utils_inet6_interface_identifier_to_token (NMUtilsIPv6IfaceId iid, char *buf) { struct in6_addr i6_token = { .s6_addr = { 0, } }; nm_utils_ipv6_addr_set_interface_identifier (&i6_token, iid); return nm_utils_inet6_ntop (&i6_token, buf); } /*****************************************************************************/ char * nm_utils_stable_id_random (void) { char buf[15]; nm_utils_random_bytes (buf, sizeof (buf)); return g_base64_encode ((guchar *) buf, sizeof (buf)); } char * nm_utils_stable_id_generated_complete (const char *stable_id_generated) { guint8 buf[20]; GChecksum *sum; gsize buf_size; char *base64; /* for NM_UTILS_STABLE_TYPE_GENERATED we genererate a possibly long string * by doing text-substitutions in nm_utils_stable_id_parse(). * * Let's shorten the (possibly) long stable_id to something more compact. */ g_return_val_if_fail (stable_id_generated, NULL); sum = g_checksum_new (G_CHECKSUM_SHA1); nm_assert (sum); g_checksum_update (sum, (guchar *) stable_id_generated, strlen (stable_id_generated)); buf_size = sizeof (buf); g_checksum_get_digest (sum, buf, &buf_size); nm_assert (buf_size == sizeof (buf)); g_checksum_free (sum); /* we don't care to use the sha1 sum in common hex representation. * Use instead base64, it's 27 chars (stripping the padding) vs. * 40. */ base64 = g_base64_encode ((guchar *) buf, sizeof (buf)); nm_assert (strlen (base64) == 28); nm_assert (base64[27] == '='); base64[27] = '\0'; return base64; } static void _stable_id_append (GString *str, const char *substitution) { if (!substitution) substitution = ""; g_string_append_printf (str, "=%zu{%s}", strlen (substitution), substitution); } NMUtilsStableType nm_utils_stable_id_parse (const char *stable_id, const char *uuid, const char *bootid, char **out_generated) { gsize i, idx_start; GString *str = NULL; g_return_val_if_fail (out_generated, NM_UTILS_STABLE_TYPE_RANDOM); if (!stable_id) { *out_generated = NULL; return NM_UTILS_STABLE_TYPE_UUID; } /* the stable-id allows for some dynamic by performing text-substitutions * of ${...} patterns. * * At first, it looks a bit like bash parameter substitution. * In contrast however, the process is unambigious so that the resulting * effective id differs if: * - the original, untranslated stable-id differs * - or any of the subsitutions differs. * * The reason for that is, for example if you specify "${CONNECTION}" in the * stable-id, then the resulting ID should be always(!) unique for this connection. * There should be no way another connection could specify any stable-id that results * in the same addresses to be generated (aside hash collisions). * * * For example: say you have a connection with UUID * "123e4567-e89b-12d3-a456-426655440000" which happens also to be * the current boot-id. * Then: * (1) connection.stable-id = * (2) connection.stable-id = "123e4567-e89b-12d3-a456-426655440000" * (3) connection.stable-id = "${CONNECTION}" * (3) connection.stable-id = "${BOOT}" * will all generate different addresses, although in one way or the * other, they all mangle the uuid "123e4567-e89b-12d3-a456-426655440000". * * For example, with stable-id="${FOO}${BAR}" the substitutions * - FOO="ab", BAR="c" * - FOO="a", BAR="bc" * should give a different effective id. * * For example, with FOO="x" and BAR="x", the stable-ids * - "${FOO}${BAR}" * - "${BAR}${FOO}" * should give a different effective id. */ idx_start = 0; for (i = 0; stable_id[i]; ) { if (stable_id[i] != '$') { i++; continue; } #define CHECK_PREFIX(prefix) \ ({ \ gboolean _match = FALSE; \ \ if (g_str_has_prefix (&stable_id[i], ""prefix"")) { \ _match = TRUE; \ if (!str) \ str = g_string_sized_new (256); \ i += NM_STRLEN (prefix); \ g_string_append_len (str, &(stable_id)[idx_start], i - idx_start); \ idx_start = i; \ } \ _match; \ }) if (CHECK_PREFIX ("${CONNECTION}")) _stable_id_append (str, uuid); else if (CHECK_PREFIX ("${BOOT}")) _stable_id_append (str, bootid ?: nm_utils_get_boot_id ()); else if (g_str_has_prefix (&stable_id[i], "${RANDOM}")) { /* RANDOM makes not so much sense for cloned-mac-address * as the result is simmilar to specyifing "cloned-mac-address=random". * It makes however sense for RFC 7217 Stable Privacy IPv6 addresses * where this is effectively the only way to generate a different * (random) host identifier for each connect. * * With RANDOM, the user can switch the lifetime of the * generated cloned-mac-address and IPv6 host identifier * by toggeling only the stable-id property of the connection. * With RANDOM being the most short-lived, ~non-stable~ variant. */ if (str) g_string_free (str, TRUE); *out_generated = NULL; return NM_UTILS_STABLE_TYPE_RANDOM; } else { /* The text following the '$' is not recognized as valid * substitution pattern. Treat it verbatim. */ i++; /* Note that using unrecognized substitution patterns might * yield different results with future versions. Avoid that, * by not using '$' (except for actual substitutions) or escape * it as "$$" (which is guaranteed to be treated verbatim * in future). */ if (stable_id[i] == '$') i++; } } #undef CHECK_PREFIX if (!str) { *out_generated = NULL; return NM_UTILS_STABLE_TYPE_STABLE_ID; } if (idx_start < i) g_string_append_len (str, &stable_id[idx_start], i - idx_start); *out_generated = g_string_free (str, FALSE); return NM_UTILS_STABLE_TYPE_GENERATED; } /*****************************************************************************/ static gboolean _is_reserved_ipv6_iid (const guint8 *iid) { /* https://tools.ietf.org/html/rfc5453 */ /* https://www.iana.org/assignments/ipv6-interface-ids/ipv6-interface-ids.xml */ /* 0000:0000:0000:0000 (Subnet-Router Anycast [RFC4291]) */ if (memcmp (iid, &nm_ip_addr_zero.addr6.s6_addr[8], 8) == 0) return TRUE; /* 0200:5EFF:FE00:0000 - 0200:5EFF:FE00:5212 (Reserved IPv6 Interface Identifiers corresponding to the IANA Ethernet Block [RFC4291]) * 0200:5EFF:FE00:5213 (Proxy Mobile IPv6 [RFC6543]) * 0200:5EFF:FE00:5214 - 0200:5EFF:FEFF:FFFF (Reserved IPv6 Interface Identifiers corresponding to the IANA Ethernet Block [RFC4291]) */ if (memcmp (iid, (const guint8[]) { 0x02, 0x00, 0x5E, 0xFF, 0xFE }, 5) == 0) return TRUE; /* FDFF:FFFF:FFFF:FF80 - FDFF:FFFF:FFFF:FFFF (Reserved Subnet Anycast Addresses [RFC2526]) */ if (memcmp (iid, (const guint8[]) { 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, 7) == 0) { if (iid[7] & 0x80) return TRUE; } return FALSE; } static gboolean _set_stable_privacy (NMUtilsStableType stable_type, struct in6_addr *addr, const char *ifname, const char *network_id, guint32 dad_counter, guint8 *secret_key, gsize key_len, GError **error) { GChecksum *sum; guint8 digest[32]; guint32 tmp[2]; gsize len = sizeof (digest); nm_assert (key_len); nm_assert (network_id); /* Documentation suggests that this can fail. * Maybe in case of a missing algorithm in crypto library? */ sum = g_checksum_new (G_CHECKSUM_SHA256); if (!sum) { g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "Can't create a SHA256 hash"); return FALSE; } key_len = MIN (key_len, G_MAXUINT32); if (stable_type != NM_UTILS_STABLE_TYPE_UUID) { guint8 stable_type_uint8; nm_assert (stable_type < (NMUtilsStableType) 255); stable_type_uint8 = (guint8) stable_type; /* Preferably, we would always like to include the stable-type, * but for backward compatibility reasons, we cannot for UUID. * * That is no real problem and it is still impossible to * force a collision here, because of how the remaining * fields are hashed. That is, as we also hash @key_len * and the terminating '\0' of @network_id, it is unambigiously * possible to revert the process and deduce the @stable_type. */ g_checksum_update (sum, &stable_type_uint8, sizeof (stable_type_uint8)); } g_checksum_update (sum, addr->s6_addr, 8); g_checksum_update (sum, (const guchar *) ifname, strlen (ifname) + 1); g_checksum_update (sum, (const guchar *) network_id, strlen (network_id) + 1); tmp[0] = htonl (dad_counter); tmp[1] = htonl (key_len); g_checksum_update (sum, (const guchar *) tmp, sizeof (tmp)); g_checksum_update (sum, (const guchar *) secret_key, key_len); g_checksum_get_digest (sum, digest, &len); nm_assert (len == sizeof (digest)); while (_is_reserved_ipv6_iid (digest)) { g_checksum_reset (sum); tmp[0] = htonl (++dad_counter); g_checksum_update (sum, digest, len); g_checksum_update (sum, (const guchar *) &tmp[0], sizeof (tmp[0])); g_checksum_get_digest (sum, digest, &len); nm_assert (len == sizeof (digest)); } g_checksum_free (sum); memcpy (addr->s6_addr + 8, &digest[0], 8); return TRUE; } gboolean nm_utils_ipv6_addr_set_stable_privacy_impl (NMUtilsStableType stable_type, struct in6_addr *addr, const char *ifname, const char *network_id, guint32 dad_counter, guint8 *secret_key, gsize key_len, GError **error) { return _set_stable_privacy (stable_type, addr, ifname, network_id, dad_counter, secret_key, key_len, error); } #define RFC7217_IDGEN_RETRIES 3 /** * nm_utils_ipv6_addr_set_stable_privacy: * * Extend the address prefix with an interface identifier using the * RFC 7217 Stable Privacy mechanism. * * Returns: %TRUE on success, %FALSE if the address could not be generated. */ gboolean nm_utils_ipv6_addr_set_stable_privacy (NMUtilsStableType stable_type, struct in6_addr *addr, const char *ifname, const char *network_id, guint32 dad_counter, GError **error) { gs_free guint8 *secret_key = NULL; gsize key_len = 0; g_return_val_if_fail (network_id, FALSE); if (dad_counter >= RFC7217_IDGEN_RETRIES) { g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "Too many DAD collisions"); return FALSE; } secret_key = nm_utils_secret_key_read (&key_len, error); if (!secret_key) return FALSE; return _set_stable_privacy (stable_type, addr, ifname, network_id, dad_counter, secret_key, key_len, error); } /*****************************************************************************/ static void _hw_addr_eth_complete (struct ether_addr *addr, const char *current_mac_address, const char *generate_mac_address_mask) { struct ether_addr mask; struct ether_addr oui; struct ether_addr *ouis; gsize ouis_len; guint i; /* the second LSB of the first octet means * "globally unique, OUI enforced, BIA (burned-in-address)" * vs. "locally-administered". By default, set it to * generate locally-administered addresses. * * Maybe be overwritten by a mask below. */ addr->ether_addr_octet[0] |= 2; if (!generate_mac_address_mask || !*generate_mac_address_mask) goto out; if (!_nm_utils_generate_mac_address_mask_parse (generate_mac_address_mask, &mask, &ouis, &ouis_len, NULL)) goto out; nm_assert ((ouis == NULL) ^ (ouis_len != 0)); if (ouis) { /* g_random_int() is good enough here. It uses a static GRand instance * that is seeded from /dev/urandom. */ oui = ouis[g_random_int () % ouis_len]; g_free (ouis); } else { if (!nm_utils_hwaddr_aton (current_mac_address, &oui, ETH_ALEN)) goto out; } for (i = 0; i < ETH_ALEN; i++) { const guint8 a = addr->ether_addr_octet[i]; const guint8 o = oui.ether_addr_octet[i]; const guint8 m = mask.ether_addr_octet[i]; addr->ether_addr_octet[i] = (a & ~m) | (o & m); } out: /* The LSB of the first octet must always be cleared, * it means Unicast vs. Multicast */ addr->ether_addr_octet[0] &= ~1; } char * nm_utils_hw_addr_gen_random_eth (const char *current_mac_address, const char *generate_mac_address_mask) { struct ether_addr bin_addr; nm_utils_random_bytes (&bin_addr, ETH_ALEN); _hw_addr_eth_complete (&bin_addr, current_mac_address, generate_mac_address_mask); return nm_utils_hwaddr_ntoa (&bin_addr, ETH_ALEN); } static char * _hw_addr_gen_stable_eth (NMUtilsStableType stable_type, const char *stable_id, const guint8 *secret_key, gsize key_len, const char *ifname, const char *current_mac_address, const char *generate_mac_address_mask) { GChecksum *sum; guint32 tmp; guint8 digest[32]; gsize len = sizeof (digest); struct ether_addr bin_addr; guint8 stable_type_uint8; nm_assert (stable_id); nm_assert (secret_key); sum = g_checksum_new (G_CHECKSUM_SHA256); if (!sum) return NULL; key_len = MIN (key_len, G_MAXUINT32); nm_assert (stable_type < (NMUtilsStableType) 255); stable_type_uint8 = stable_type; g_checksum_update (sum, (const guchar *) &stable_type_uint8, sizeof (stable_type_uint8)); tmp = htonl ((guint32) key_len); g_checksum_update (sum, (const guchar *) &tmp, sizeof (tmp)); g_checksum_update (sum, (const guchar *) secret_key, key_len); g_checksum_update (sum, (const guchar *) (ifname ?: ""), ifname ? (strlen (ifname) + 1) : 1); g_checksum_update (sum, (const guchar *) stable_id, strlen (stable_id) + 1); g_checksum_get_digest (sum, digest, &len); g_checksum_free (sum); g_return_val_if_fail (len == 32, NULL); memcpy (&bin_addr, digest, ETH_ALEN); _hw_addr_eth_complete (&bin_addr, current_mac_address, generate_mac_address_mask); return nm_utils_hwaddr_ntoa (&bin_addr, ETH_ALEN); } char * nm_utils_hw_addr_gen_stable_eth_impl (NMUtilsStableType stable_type, const char *stable_id, const guint8 *secret_key, gsize key_len, const char *ifname, const char *current_mac_address, const char *generate_mac_address_mask) { return _hw_addr_gen_stable_eth (stable_type, stable_id, secret_key, key_len, ifname, current_mac_address, generate_mac_address_mask); } char * nm_utils_hw_addr_gen_stable_eth (NMUtilsStableType stable_type, const char *stable_id, const char *ifname, const char *current_mac_address, const char *generate_mac_address_mask) { gs_free guint8 *secret_key = NULL; gsize key_len = 0; g_return_val_if_fail (stable_id, NULL); secret_key = nm_utils_secret_key_read (&key_len, NULL); if (!secret_key) return NULL; return _hw_addr_gen_stable_eth (stable_type, stable_id, secret_key, key_len, ifname, current_mac_address, generate_mac_address_mask); } /*****************************************************************************/ /** * nm_utils_setpgid: * @unused: unused * * This can be passed as a child setup function to the g_spawn*() family * of functions, to ensure that the child is in its own process group * (and thus, in some situations, will not be killed when NetworkManager * is killed). */ void nm_utils_setpgid (gpointer unused G_GNUC_UNUSED) { pid_t pid; pid = getpid (); setpgid (pid, pid); } /** * nm_utils_g_value_set_strv: * @value: a #GValue, initialized to store a #G_TYPE_STRV * @strings: a #GPtrArray of strings * * Converts @strings to a #GStrv and stores it in @value. */ void nm_utils_g_value_set_strv (GValue *value, GPtrArray *strings) { char **strv; int i; strv = g_new (char *, strings->len + 1); for (i = 0; i < strings->len; i++) strv[i] = g_strdup (strings->pdata[i]); strv[i] = NULL; g_value_take_boxed (value, strv); } /*****************************************************************************/ static gboolean debug_key_matches (const gchar *key, const gchar *token, guint length) { /* may not call GLib functions: see note in g_parse_debug_string() */ for (; length; length--, key++, token++) { char k = (*key == '_') ? '-' : g_ascii_tolower (*key ); char t = (*token == '_') ? '-' : g_ascii_tolower (*token); if (k != t) return FALSE; } return *key == '\0'; } /** * nm_utils_parse_debug_string: * @string: the string to parse * @keys: the debug keys * @nkeys: number of entries in @keys * * Similar to g_parse_debug_string(), but does not special * case "help" or "all". * * Returns: the flags */ guint nm_utils_parse_debug_string (const char *string, const GDebugKey *keys, guint nkeys) { guint i; guint result = 0; const char *q; if (string == NULL) return 0; while (*string) { q = strpbrk (string, ":;, \t"); if (!q) q = string + strlen (string); for (i = 0; i < nkeys; i++) { if (debug_key_matches (keys[i].key, string, q - string)) result |= keys[i].value; } string = q; if (*string) string++; } return result; } /*****************************************************************************/ void nm_utils_ifname_cpy (char *dst, const char *name) { g_return_if_fail (dst); g_return_if_fail (name && name[0]); nm_assert (nm_utils_is_valid_iface_name (name, NULL)); if (g_strlcpy (dst, name, IFNAMSIZ) >= IFNAMSIZ) g_return_if_reached (); } /*****************************************************************************/ #define IPV4LL_NETWORK (htonl (0xA9FE0000L)) #define IPV4LL_NETMASK (htonl (0xFFFF0000L)) gboolean nm_utils_ip4_address_is_link_local (in_addr_t addr) { return (addr & IPV4LL_NETMASK) == IPV4LL_NETWORK; } /*****************************************************************************/ /** * Takes a pair @timestamp and @duration, and returns the remaining duration based * on the new timestamp @now. */ guint32 nm_utils_lifetime_rebase_relative_time_on_now (guint32 timestamp, guint32 duration, gint32 now) { gint64 t; nm_assert (now >= 0); if (duration == NM_PLATFORM_LIFETIME_PERMANENT) return NM_PLATFORM_LIFETIME_PERMANENT; if (timestamp == 0) { /* if the @timestamp is zero, assume it was just left unset and that the relative * @duration starts counting from @now. This is convenient to construct an address * and print it in nm_platform_ip4_address_to_string(). * * In general it does not make sense to set the @duration without anchoring at * @timestamp because you don't know the absolute expiration time when looking * at the address at a later moment. */ timestamp = now; } /* For timestamp > now, just accept it and calculate the expected(?) result. */ t = (gint64) timestamp + (gint64) duration - (gint64) now; if (t <= 0) return 0; if (t >= NM_PLATFORM_LIFETIME_PERMANENT) return NM_PLATFORM_LIFETIME_PERMANENT - 1; return t; } gboolean nm_utils_lifetime_get (guint32 timestamp, guint32 lifetime, guint32 preferred, gint32 now, guint32 *out_lifetime, guint32 *out_preferred) { guint32 t_lifetime, t_preferred; nm_assert (now >= 0); if (timestamp == 0 && lifetime == 0) { /* We treat lifetime==0 && timestamp == 0 addresses as permanent addresses to allow easy * creation of such addresses (without requiring to set the lifetime fields to * NM_PLATFORM_LIFETIME_PERMANENT). The real lifetime==0 addresses (E.g. DHCP6 telling us * to drop an address will have timestamp set. */ *out_lifetime = NM_PLATFORM_LIFETIME_PERMANENT; *out_preferred = NM_PLATFORM_LIFETIME_PERMANENT; g_return_val_if_fail (preferred == 0, TRUE); } else { if (now <= 0) now = nm_utils_get_monotonic_timestamp_s (); t_lifetime = nm_utils_lifetime_rebase_relative_time_on_now (timestamp, lifetime, now); if (!t_lifetime) { *out_lifetime = 0; *out_preferred = 0; return FALSE; } t_preferred = nm_utils_lifetime_rebase_relative_time_on_now (timestamp, preferred, now); *out_lifetime = t_lifetime; *out_preferred = MIN (t_preferred, t_lifetime); /* Assert that non-permanent addresses have a (positive) @timestamp. nm_utils_lifetime_rebase_relative_time_on_now() * treats addresses with timestamp 0 as *now*. Addresses passed to _address_get_lifetime() always * should have a valid @timestamp, otherwise on every re-sync, their lifetime will be extended anew. */ g_return_val_if_fail ( timestamp != 0 || ( lifetime == NM_PLATFORM_LIFETIME_PERMANENT && preferred == NM_PLATFORM_LIFETIME_PERMANENT), TRUE); g_return_val_if_fail (t_preferred <= t_lifetime, TRUE); } return TRUE; } const char * nm_utils_dnsmasq_status_to_string (int status, char *dest, gsize size) { const char *msg; nm_utils_to_string_buffer_init (&dest, &size); if (status == 0) msg = "Success"; else if (status == 1) msg = "Configuration problem"; else if (status == 2) msg = "Network access problem (address in use, permissions)"; else if (status == 3) msg = "Filesystem problem (missing file/directory, permissions)"; else if (status == 4) msg = "Memory allocation failure"; else if (status == 5) msg = "Other problem"; else if (status >= 11) { g_snprintf (dest, size, "Lease script failed with error %d", status - 10); return dest; } else msg = "Unknown problem"; g_snprintf (dest, size, "%s (%d)", msg, status); return dest; } /** * nm_utils_get_reverse_dns_domains_ip4: * @addr: IP address in network order * @plen: prefix length * @domains: array for results * * Creates reverse DNS domains for the given address and prefix length, and * append them to @domains. */ void nm_utils_get_reverse_dns_domains_ip4 (guint32 addr, guint8 plen, GPtrArray *domains) { guint32 ip, ip2, mask; guchar *p; guint octets; guint i; gsize len0, len; char *str, *s; g_return_if_fail (domains); g_return_if_fail (plen <= 32); if (!plen) return; octets = (plen - 1) / 8 + 1; ip = ntohl (addr); mask = 0xFFFFFFFF << (32 - plen); ip &= mask; ip2 = ip; len0 = NM_STRLEN ("in-addr.arpa") + (4 * octets) + 1; while ((ip2 & mask) == ip) { addr = htonl (ip2); p = (guchar *) &addr; len = len0; str = s = g_malloc (len); for (i = octets; i > 0; i--) nm_utils_strbuf_append (&s, &len, "%u.", p[i - 1] & 0xff); nm_utils_strbuf_append_str (&s, &len, "in-addr.arpa"); g_ptr_array_add (domains, str); ip2 += 1 << ((32 - plen) & ~7); } } /** * nm_utils_get_reverse_dns_domains_ip6: * @addr: IPv6 address * @plen: prefix length * @domains: array for results * * Creates reverse DNS domains for the given address and prefix length, and * append them to @domains. */ void nm_utils_get_reverse_dns_domains_ip6 (const struct in6_addr *ip, guint8 plen, GPtrArray *domains) { struct in6_addr addr; guint nibbles, bits, entries; int i, j; gsize len0, len; char *str, *s; g_return_if_fail (domains); g_return_if_fail (plen <= 128); if (!plen) return; memcpy (&addr, ip, sizeof (struct in6_addr)); nm_utils_ip6_address_clear_host_address (&addr, &addr, plen); /* Number of nibbles to include in domains */ nibbles = (plen - 1) / 4 + 1; /* Prefix length in nibble */ bits = plen - ((plen - 1) / 4 * 4); /* Number of domains */ entries = 1 << (4 - bits); len0 = NM_STRLEN ("ip6.arpa") + (2 * nibbles) + 1; #define N_SHIFT(x) ((x) % 2 ? 0 : 4) for (i = 0; i < entries; i++) { len = len0; str = s = g_malloc (len); for (j = nibbles - 1; j >= 0; j--) nm_utils_strbuf_append (&s, &len, "%x.", (addr.s6_addr[j / 2] >> N_SHIFT (j)) & 0xf); nm_utils_strbuf_append_str (&s, &len, "ip6.arpa"); g_ptr_array_add (domains, str); addr.s6_addr[(nibbles - 1) / 2] += 1 << N_SHIFT (nibbles - 1); } #undef N_SHIFT } /** * Copied from GLib's g_file_set_contents() et al., but allows * specifying a mode for the new file. */ gboolean nm_utils_file_set_contents (const gchar *filename, const gchar *contents, gssize length, mode_t mode, GError **error) { gs_free char *tmp_name = NULL; struct stat statbuf; int errsv; gssize s; int fd; g_return_val_if_fail (filename, FALSE); g_return_val_if_fail (contents || !length, FALSE); g_return_val_if_fail (!error || !*error, FALSE); g_return_val_if_fail (length >= -1, FALSE); if (length == -1) length = strlen (contents); tmp_name = g_strdup_printf ("%s.XXXXXX", filename); fd = g_mkstemp_full (tmp_name, O_RDWR, mode); if (fd < 0) { errsv = errno; g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "failed to create file %s: %s", tmp_name, g_strerror (errsv)); return FALSE; } while (length > 0) { s = write (fd, contents, length); if (s < 0) { errsv = errno; if (errsv == EINTR) continue; nm_close (fd); unlink (tmp_name); g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "failed to write to file %s: %s", tmp_name, g_strerror (errsv)); return FALSE; } g_assert (s <= length); contents += s; length -= s; } /* If the final destination exists and is > 0 bytes, we want to sync the * newly written file to ensure the data is on disk when we rename over * the destination. Otherwise if we get a system crash we can lose both * the new and the old file on some filesystems. (I.E. those that don't * guarantee the data is written to the disk before the metadata.) */ if ( lstat (filename, &statbuf) == 0 && statbuf.st_size > 0 && fsync (fd) != 0) { errsv = errno; nm_close (fd); unlink (tmp_name); g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "failed to fsync %s: %s", tmp_name, g_strerror (errsv)); return FALSE; } nm_close (fd); if (rename (tmp_name, filename)) { errsv = errno; unlink (tmp_name); g_set_error (error, G_FILE_ERROR, g_file_error_from_errno (errsv), "failed to rename %s to %s: %s", tmp_name, filename, g_strerror (errsv)); return FALSE; } return TRUE; } struct plugin_info { char *path; struct stat st; }; static gint read_device_factory_paths_sort_fcn (gconstpointer a, gconstpointer b) { const struct plugin_info *da = a; const struct plugin_info *db = b; time_t ta, tb; ta = MAX (da->st.st_mtime, da->st.st_ctime); tb = MAX (db->st.st_mtime, db->st.st_ctime); if (ta < tb) return 1; if (ta > tb) return -1; return 0; } gboolean nm_utils_validate_plugin (const char *path, struct stat *st, GError **error) { g_return_val_if_fail (path, FALSE); g_return_val_if_fail (st, FALSE); g_return_val_if_fail (!error || !*error, FALSE); if (!S_ISREG (st->st_mode)) { g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "not a regular file"); return FALSE; } #if DEVELOP /* Do not check plugin ownership when running NetworkManager from the * build directory. It will typically belong to the user who is using * sudo to run NetworkManager as root. */ #else if (st->st_uid != 0) { g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "file has invalid owner (should be root)"); return FALSE; } #endif if (st->st_mode & (S_IWGRP | S_IWOTH | S_ISUID)) { g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN, "file has invalid permissions"); return FALSE; } return TRUE; } char ** nm_utils_read_plugin_paths (const char *dirname, const char *prefix) { GDir *dir; GError *error = NULL; const char *item; GArray *paths; char **result; guint i; g_return_val_if_fail (dirname, NULL); g_return_val_if_fail (prefix, NULL); dir = g_dir_open (dirname, 0, &error); if (!dir) { nm_log_warn (LOGD_CORE, "device plugin: failed to open directory %s: %s", dirname, error->message); g_clear_error (&error); return NULL; } paths = g_array_new (FALSE, FALSE, sizeof (struct plugin_info)); while ((item = g_dir_read_name (dir))) { int errsv; struct plugin_info data; if (!g_str_has_prefix (item, prefix)) continue; if (g_str_has_suffix (item, ".la")) continue; data.path = g_build_filename (dirname, item, NULL); if (stat (data.path, &data.st) != 0) { errsv = errno; nm_log_warn (LOGD_CORE, "plugin: skip invalid file %s (error during stat: %s)", data.path, strerror (errsv)); goto skip; } if (!nm_utils_validate_plugin (data.path, &data.st, &error)) { nm_log_warn (LOGD_CORE, "plugin: skip invalid file %s: %s", data.path, error->message); g_clear_error (&error); goto skip; } g_array_append_val (paths, data); continue; skip: g_free (data.path); } g_dir_close (dir); /* sort filenames by modification time. */ g_array_sort (paths, read_device_factory_paths_sort_fcn); result = g_new (char *, paths->len + 1); for (i = 0; i < paths->len; i++) result[i] = g_array_index (paths, struct plugin_info, i).path; result[i] = NULL; g_array_free (paths, TRUE); return result; } char * nm_utils_format_con_diff_for_audit (GHashTable *diff) { GHashTable *setting_diff; char *setting_name, *prop_name; GHashTableIter iter, iter2; GString *str; str = g_string_sized_new (32); g_hash_table_iter_init (&iter, diff); while (g_hash_table_iter_next (&iter, (gpointer *) &setting_name, (gpointer *) &setting_diff)) { if (!setting_diff) continue; g_hash_table_iter_init (&iter2, setting_diff); while (g_hash_table_iter_next (&iter2, (gpointer *) &prop_name, NULL)) g_string_append_printf (str, "%s.%s,", setting_name, prop_name); } if (str->len) str->str[str->len - 1] = '\0'; return g_string_free (str, FALSE); } /*****************************************************************************/ NM_UTILS_ENUM2STR_DEFINE (nm_icmpv6_router_pref_to_string, NMIcmpv6RouterPref, NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_LOW, "low"), NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_MEDIUM, "medium"), NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_HIGH, "high"), NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_INVALID, "invalid"), ); NM_UTILS_LOOKUP_STR_DEFINE (nm_activation_type_to_string, NMActivationType, NM_UTILS_LOOKUP_DEFAULT_WARN ("(unknown)"), NM_UTILS_LOOKUP_STR_ITEM (NM_ACTIVATION_TYPE_MANAGED, "managed"), NM_UTILS_LOOKUP_STR_ITEM (NM_ACTIVATION_TYPE_ASSUME, "assume"), NM_UTILS_LOOKUP_STR_ITEM (NM_ACTIVATION_TYPE_EXTERNAL, "external"), )