/* -*- C++ -*- */ // $Id$ // ============================================================================ // // = LIBRARY // ace // // = FILENAME // Reactor_Impl.h // // = AUTHOR // Irfan Pyarali // // ============================================================================ #if !defined (ACE_REACTOR_IMPL_H) #define ACE_REACTOR_IMPL_H // Timer Queue is a complicated template class. A simple forward // declaration will not work #include "ace/Timer_Queue.h" // Event_Handler.h contains the definition of ACE_Reactor_Mask #include "ace/Event_Handler.h" // We are using 4 or 5 signal classes, we could forward declare // them.... But Timer_Queue_T.h includes Signal.h, so I don't think // forward declaration will be useful here #include "ace/Signal.h" // Forward decls class ACE_Handle_Set; class ACE_Reactor_Impl; class ACE_Export ACE_Reactor_Notify : public ACE_Event_Handler { // = TITLE // Abstract class for unblocking an from its // event loop. public: // = Initialization and termination methods. virtual int open (ACE_Reactor_Impl *, ACE_Timer_Queue *timer_queue = 0, int disable_notify = 0) = 0; virtual int close (void) = 0; virtual ssize_t notify (ACE_Event_Handler * = 0, ACE_Reactor_Mask = ACE_Event_Handler::EXCEPT_MASK, ACE_Time_Value * = 0) = 0; // Called by a thread when it wants to unblock the . // This wakeups the if currently blocked. Pass over // both the *and* the to allow the caller to // dictate which method the will // invoke. The indicates how long to blocking // trying to notify the . If == 0, the // caller will block until action is possible, else will wait until // the relative time specified in * elapses). virtual int dispatch_notifications (int &number_of_active_handles, const ACE_Handle_Set &rd_mask) = 0; // Handles pending threads (if any) that are waiting to unblock the // . virtual void max_notify_iterations (int) = 0; // Set the maximum number of times that the method // will iterate and dispatch the that are // passed in via the notify queue before breaking out of the event // loop. By default, this is set to -1, which means "iterate until // the queue is empty." Setting this to a value like "1 or 2" will // increase "fairness" (and thus prevent starvation) at the expense // of slightly higher dispatching overhead. virtual int max_notify_iterations (void) = 0; // Get the maximum number of times that the method // will iterate and dispatch the that are // passed in via the notify queue before breaking out of its event // loop. virtual void dump (void) const = 0; // Dump the state of an object. }; class ACE_Export ACE_Reactor_Impl { // = TITLE // An abstract class for implementing the Reactor Pattern. public: virtual ~ACE_Reactor_Impl (void) {} // Close down and release all resources. virtual int open (size_t size, int restart = 0, ACE_Sig_Handler * = 0, ACE_Timer_Queue * = 0, int disable_notify_pipe = 0, ACE_Reactor_Notify * = 0) = 0; // Initialization. virtual int current_info (ACE_HANDLE, size_t & /* size */) = 0; // Returns 0, if the size of the current message has been put in // Returns -1, if not. ACE_HANDLE allows the reactor to // check if the caller is valid. virtual int set_sig_handler (ACE_Sig_Handler *signal_handler) = 0; // Use a user specified signal handler instead. virtual int set_timer_queue (ACE_Timer_Queue *timer_queue) = 0; // Use a user specified timer queue instead. virtual int close (void) = 0; // Close down and release all resources. // = Event loop drivers. virtual int handle_events (ACE_Time_Value *max_wait_time = 0) = 0; virtual int alertable_handle_events (ACE_Time_Value *max_wait_time = 0) = 0; // This event loop driver blocks for up to before // returning. It will return earlier if events occur. Note that // can be 0, in which case this method blocks // indefinitely until events occur. // // is decremented to reflect how much time this call // took. For instance, if a time value of 3 seconds is passed to // handle_events and an event occurs after 2 seconds, // will equal 1 second. This can be used if an // application wishes to handle events for some fixed amount of // time. // // Returns the total number of s that were // dispatched, 0 if the elapsed without dispatching // any handlers, or -1 if an error occurs. // // The only difference between and // is that in the alertable case, the eventloop will // return when the system queues an I/O completion routine or an // Asynchronous Procedure Call. virtual int handle_events (ACE_Time_Value &max_wait_time) = 0; virtual int alertable_handle_events (ACE_Time_Value &max_wait_time) = 0; // This method is just like the one above, except the // value is a reference and can therefore never be // NULL. // // The only difference between and // is that in the alertable case, the eventloop will // return when the system queues an I/O completion routine or an // Asynchronous Procedure Call. // = Register and remove Handlers. virtual int register_handler (ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask) = 0; // Register with . The I/O handle will always // come from on the . virtual int register_handler (ACE_HANDLE io_handle, ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask) = 0; // Register with . The I/O handle is provided // through the parameter. #if defined (ACE_WIN32) // Originally this interface was available for all platforms, but // because ACE_HANDLE is an int on non-Win32 platforms, compilers // are not able to tell the difference between // register_handler(ACE_Event_Handler*,ACE_Reactor_Mask) and // register_handler(ACE_Event_Handler*,ACE_HANDLE). Therefore, we // have restricted this method to Win32 only. virtual int register_handler (ACE_Event_Handler *event_handler, ACE_HANDLE event_handle = ACE_INVALID_HANDLE) = 0; // Register an that will be notified when // is signaled. Since no event mask is passed // through this interface, it is assumed that the // being passed in is an event handle and not an I/O handle. #endif /* ACE_WIN32 */ virtual int register_handler (ACE_HANDLE event_handle, ACE_HANDLE io_handle, ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask) = 0; // Register an that will be notified when // is signaled. specifies the network events // that the is interested in. virtual int register_handler (const ACE_Handle_Set &handles, ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask) = 0; // Register with all the in the . virtual int register_handler (int signum, ACE_Event_Handler *new_sh, ACE_Sig_Action *new_disp = 0, ACE_Event_Handler **old_sh = 0, ACE_Sig_Action *old_disp = 0) = 0; // Register to handle the signal using the // . Returns the that was previously registered // (if any), along with the of the signal handler. virtual int register_handler (const ACE_Sig_Set &sigset, ACE_Event_Handler *new_sh, ACE_Sig_Action *new_disp = 0) = 0; // Registers to handle a set of signals using the // . virtual int remove_handler (ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask) = 0; // Removes . Note that the I/O handle will be // obtained using method of . If // == then the // method of the is not invoked. virtual int remove_handler (ACE_HANDLE handle, ACE_Reactor_Mask mask) = 0; // Removes . If == // then the method of the associated // is not invoked. virtual int remove_handler (const ACE_Handle_Set &handle_set, ACE_Reactor_Mask mask) = 0; // Removes all handles in . If == // then the method of // the associated s is not invoked. virtual int remove_handler (int signum, ACE_Sig_Action *new_disp, ACE_Sig_Action *old_disp = 0, int sigkey = -1) = 0; // Remove the ACE_Event_Handler currently associated with . // Install the new disposition (if given) and return the previous // disposition (if desired by the caller). Returns 0 on success and // -1 if is invalid. virtual int remove_handler (const ACE_Sig_Set &sigset) = 0; // Calls for every signal in . // = Suspend and resume Handlers. virtual int suspend_handler (ACE_Event_Handler *event_handler) = 0; // Suspend temporarily. Use // get_handle()> to get the handle. virtual int suspend_handler (ACE_HANDLE handle) = 0; // Suspend temporarily. virtual int suspend_handler (const ACE_Handle_Set &handles) = 0; // Suspend all in handle set temporarily. virtual int suspend_handlers (void) = 0; // Suspend all temporarily. virtual int resume_handler (ACE_Event_Handler *event_handler) = 0; // Resume . Use get_handle()> to get // the handle. virtual int resume_handler (ACE_HANDLE handle) = 0; // Resume . virtual int resume_handler (const ACE_Handle_Set &handles) = 0; // Resume all in handle set. virtual int resume_handlers (void) = 0; // Resume all . virtual int uses_event_associations (void) = 0; // Return 1 if we any event associations were made by the reactor // for the handles that it waits on, 0 otherwise. // If we need to reset handles returned from accept/connect. // Timer management. virtual long schedule_timer (ACE_Event_Handler *event_handler, const void *arg, const ACE_Time_Value &delta, const ACE_Time_Value &interval = ACE_Time_Value::zero) = 0; // Schedule an that will expire after amount // of time. If it expires then is passed in as the value to // the 's callback method. If // is != to then it is used to // reschedule the automatically. This method // returns a that uniquely identifies the // in an internal list. This can be used to cancel an // before it expires. The cancellation ensures that // are unique up to values of greater than 2 billion // timers. As long as timers don't stay around longer than this // there should be no problems with accidentally deleting the wrong // timer. Returns -1 on failure (which is guaranteed never to be a // valid . virtual int cancel_timer (ACE_Event_Handler *event_handler, int dont_call_handle_close = 1) = 0; // Cancel all Event_Handlers that match the address of // . Returns number of handlers cancelled. virtual int cancel_timer (long timer_id, const void **arg = 0, int dont_call_handle_close = 1) = 0; // Cancel the single Event_Handler that matches the value // (which was returned from the schedule method). If arg is // non-NULL then it will be set to point to the ``magic cookie'' // argument passed in when the Event_Handler was registered. This // makes it possible to free up the memory and avoid memory leaks. // Returns 1 if cancellation succeeded and 0 if the // wasn't found. // = High-level Event_Handler scheduling operations virtual int schedule_wakeup (ACE_Event_Handler *event_handler, ACE_Reactor_Mask masks_to_be_added) = 0; // Add to the 's entry. // must already have been registered. virtual int schedule_wakeup (ACE_HANDLE handle, ACE_Reactor_Mask masks_to_be_added) = 0; // Add to the 's entry. // associated with must already have been registered. virtual int cancel_wakeup (ACE_Event_Handler *event_handler, ACE_Reactor_Mask masks_to_be_cleared) = 0; // Clear from the 's entry. virtual int cancel_wakeup (ACE_HANDLE handle, ACE_Reactor_Mask masks_to_be_cleared) = 0; // Clear from the 's entry. // = Notification methods. virtual int notify (ACE_Event_Handler *event_handler = 0, ACE_Reactor_Mask mask = ACE_Event_Handler::EXCEPT_MASK, ACE_Time_Value * = 0) = 0; // Notify of event. The // indicates how long to blocking trying to notify. If == // 0, the caller will block until action is possible, else will wait // until the relative time specified in elapses). virtual void max_notify_iterations (int) = 0; // Set the maximum number of times that ACE_Reactor_Impl will // iterate and dispatch the that are passed in // via the notify queue before breaking out of its // loop. By default, this is set to // -1, which means "iterate until the queue is empty." Setting this // to a value like "1 or 2" will increase "fairness" (and thus // prevent starvation) at the expense of slightly higher dispatching // overhead. virtual int max_notify_iterations (void) = 0; // Get the maximum number of times that the ACE_Reactor_Impl will // iterate and dispatch the that are passed in // via the notify queue before breaking out of its // loop. virtual int handler (ACE_HANDLE handle, ACE_Reactor_Mask mask, ACE_Event_Handler **event_handler = 0) = 0; // Check to see if is associated with a valid Event_Handler // bound to . Return the associated with this // if != 0. virtual int handler (int signum, ACE_Event_Handler ** = 0) = 0; // Check to see if is associated with a valid Event_Handler // bound to a signal. Return the associated with // this if != 0. virtual int initialized (void) = 0; // Returns true if Reactor has been successfully initialized, else // false. virtual size_t size (void) = 0; // Returns the current size of the Reactor's internal descriptor // table. virtual ACE_Lock &lock (void) = 0; // Returns a reference to the Reactor's internal lock. virtual void wakeup_all_threads (void) = 0; // Wake up all threads in waiting in the event loop virtual int owner (ACE_thread_t new_owner, ACE_thread_t *old_owner = 0) = 0; // Transfers ownership of Reactor_Impl to the . virtual int owner (ACE_thread_t *owner) = 0; // Return the ID of the "owner" thread. virtual void requeue_position (int) = 0; // Set position of the owner thread. virtual int requeue_position (void) = 0; // Get position of the owner thread. // = Low-level wait_set mask manipulation methods. virtual int mask_ops (ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask, int ops) = 0; // GET/SET/ADD/CLR the dispatch mask "bit" bound with the // and . virtual int mask_ops (ACE_HANDLE handle, ACE_Reactor_Mask mask, int ops) = 0; // GET/SET/ADD/CLR the dispatch MASK "bit" bound with the // and . // = Low-level ready_set mask manipulation methods. virtual int ready_ops (ACE_Event_Handler *event_handler, ACE_Reactor_Mask mask, int ops) = 0; // GET/SET/ADD/CLR the ready "bit" bound with the // and . virtual int ready_ops (ACE_HANDLE handle, ACE_Reactor_Mask, int ops) = 0; // GET/SET/ADD/CLR the ready "bit" bound with the and . virtual void dump (void) const = 0; // Dump the state of an object. ACE_ALLOC_HOOK_DECLARE; // Declare the dynamic allocation hooks. }; #endif /* ACE_REACTOR_IMPL_H */