#include /**/ "ace/config-lite.h" #include "ace/Proactor.h" #if defined (ACE_HAS_WIN32_OVERLAPPED_IO) || defined (ACE_HAS_AIO_CALLS) // This only works on Win32 platforms and on Unix platforms with aio // calls. #include "ace/Auto_Ptr.h" #include "ace/Proactor_Impl.h" #include "ace/Object_Manager.h" #include "ace/Task_T.h" #if !defined (ACE_LACKS_ACE_SVCCONF) # include "ace/Service_Config.h" #endif /* !ACE_LACKS_ACE_SVCCONF */ #include "ace/Task_T.h" #include "ace/Log_Category.h" #include "ace/Framework_Component.h" #if defined (ACE_HAS_AIO_CALLS) # include "ace/POSIX_Proactor.h" # include "ace/POSIX_CB_Proactor.h" #else /* !ACE_HAS_AIO_CALLS */ # include "ace/WIN32_Proactor.h" #endif /* ACE_HAS_AIO_CALLS */ #if !defined (__ACE_INLINE__) #include "ace/Proactor.inl" #endif /* __ACE_INLINE__ */ #include "ace/Auto_Event.h" ACE_BEGIN_VERSIONED_NAMESPACE_DECL /// Process-wide ACE_Proactor. ACE_Proactor *ACE_Proactor::proactor_ = 0; /// Controls whether the Proactor is deleted when we shut down (we can /// only delete it safely if we created it!) bool ACE_Proactor::delete_proactor_ = false; /** * @class ACE_Proactor_Timer_Handler * * @brief A Handler for timer. It helps in the management of timers * registered with the Proactor. * * This object has a thread that will wait on the earliest time * in a list of timers and an event. When a timer expires, the * thread will post a completion event on the port and go back * to waiting on the timer queue and event. If the event is * signaled, the thread will refresh the time it is currently * waiting on (in case the earliest time has changed). */ class ACE_Proactor_Timer_Handler : public ACE_Task { public: /// Constructor. explicit ACE_Proactor_Timer_Handler (ACE_Proactor &proactor); /// Destructor. ~ACE_Proactor_Timer_Handler () override; /// Proactor calls this to shut down the timer handler /// gracefully. Just calling the destructor alone doesnt do what /// does. make sure the thread exits properly. int destroy (); /// Proactor calls this to refresh the timer event thread, to wake /// up the thread from a sleep. This is needed to make the thread /// recompute its sleep time after changes to the timer queue. int signal (); protected: /// Run by a daemon thread to handle deferred processing. In other /// words, this method will do the waiting on the earliest timer and /// event. int svc () override; /// Event to wait on. ACE_Auto_Event timer_event_; /// Proactor. ACE_Proactor &proactor_; /// Flag used to indicate when we are shutting down. int shutting_down_; }; ACE_Proactor_Timer_Handler::ACE_Proactor_Timer_Handler (ACE_Proactor &proactor) : ACE_Task (&proactor.thr_mgr_), proactor_ (proactor), shutting_down_ (0) { } ACE_Proactor_Timer_Handler::~ACE_Proactor_Timer_Handler () { this->destroy(); } int ACE_Proactor_Timer_Handler::destroy () { // Mark for closing down. this->shutting_down_ = 1; // Signal timer event. this->timer_event_.signal (); // Wait for the Timer Handler thread to exit. this->wait (); return 0; } int ACE_Proactor_Timer_Handler::signal () { return this->timer_event_.signal (); } int ACE_Proactor_Timer_Handler::svc () { ACE_Time_Value absolute_time; ACE_Time_Value relative_time; int result = 0; while (this->shutting_down_ == 0) { // Check whether the timer queue has any items in it. if (this->proactor_.timer_queue ()->is_empty () == 0) { // Get the earliest absolute time. absolute_time = this->proactor_.timer_queue ()->earliest_time (); // Get current time from timer queue since we don't know // which was used. ACE_Time_Value cur_time = this->proactor_.timer_queue ()->gettimeofday (); // Compare absolute time with curent time received from the // timer queue. if (absolute_time > cur_time) relative_time = absolute_time - cur_time; else relative_time = ACE_Time_Value::zero; // Block for relative time. result = this->timer_event_.wait (&relative_time, 0); } else // The timer queue has no entries, so wait indefinitely. result = this->timer_event_.wait (); // Check for timer expiries. if (result == -1) { switch (errno) { case ETIME: // timeout: expire timers this->proactor_.timer_queue ()->expire (); break; default: // Error. ACELIB_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%N:%l:(%P | %t):%p\n"), ACE_TEXT ("ACE_Proactor_Timer_Handler::svc:wait failed")), -1); } } } return 0; } // ********************************************************************* ACE_Proactor_Handle_Timeout_Upcall::ACE_Proactor_Handle_Timeout_Upcall () : proactor_ (0) { } int ACE_Proactor_Handle_Timeout_Upcall::registration (ACE_Proactor_Timer_Queue &, ACE_Handler * handler, const void *) { handler->proactor(proactor_); return 0; } int ACE_Proactor_Handle_Timeout_Upcall::preinvoke (ACE_Proactor_Timer_Queue &, ACE_Handler *, const void *, int, const ACE_Time_Value &, const void *&) { return 0; } int ACE_Proactor_Handle_Timeout_Upcall::postinvoke (ACE_Proactor_Timer_Queue &, ACE_Handler *, const void *, int, const ACE_Time_Value &, const void *) { return 0; } int ACE_Proactor_Handle_Timeout_Upcall::timeout (ACE_Proactor_Timer_Queue &, ACE_Handler *handler, const void *act, int, const ACE_Time_Value &time) { if (this->proactor_ == 0) ACELIB_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("(%t) No Proactor set in ACE_Proactor_Handle_Timeout_Upcall,") ACE_TEXT (" no completion port to post timeout to?!@\n")), -1); // Create the Asynch_Timer. ACE_Asynch_Result_Impl *asynch_timer = this->proactor_->create_asynch_timer (handler->proxy (), act, time, ACE_INVALID_HANDLE, 0, -1); if (asynch_timer == 0) ACELIB_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%N:%l:(%P | %t):%p\n"), ACE_TEXT ("ACE_Proactor_Handle_Timeout_Upcall::timeout:") ACE_TEXT ("create_asynch_timer failed")), -1); std::unique_ptr safe_asynch_timer (asynch_timer); // Post a completion. if (-1 == safe_asynch_timer->post_completion (this->proactor_->implementation ())) ACELIB_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("Failure in dealing with timers: ") ACE_TEXT ("PostQueuedCompletionStatus failed\n")), -1); // The completion has been posted. The proactor is now responsible // for managing the asynch_timer memory. (void) safe_asynch_timer.release (); return 0; } int ACE_Proactor_Handle_Timeout_Upcall::cancel_type (ACE_Proactor_Timer_Queue &, ACE_Handler *, int, int &) { // Do nothing return 0; } int ACE_Proactor_Handle_Timeout_Upcall::cancel_timer (ACE_Proactor_Timer_Queue &, ACE_Handler *, int, int) { // Do nothing return 0; } int ACE_Proactor_Handle_Timeout_Upcall::deletion (ACE_Proactor_Timer_Queue &, ACE_Handler *, const void *) { // Do nothing return 0; } int ACE_Proactor_Handle_Timeout_Upcall::proactor (ACE_Proactor &proactor) { if (this->proactor_ == 0) { this->proactor_ = &proactor; return 0; } else ACELIB_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("ACE_Proactor_Handle_Timeout_Upcall is only suppose") ACE_TEXT (" to be used with ONE (and only one) Proactor\n")), -1); } // ********************************************************************* ACE_Proactor::ACE_Proactor (ACE_Proactor_Impl *implementation, bool delete_implementation, ACE_Proactor_Timer_Queue *tq) : implementation_ (0), delete_implementation_ (delete_implementation), timer_handler_ (0), timer_queue_ (0), delete_timer_queue_ (0), end_event_loop_ (0), event_loop_thread_count_ (0) { this->implementation (implementation); if (this->implementation () == 0) { #if defined (ACE_HAS_AIO_CALLS) // POSIX Proactor. # if defined (ACE_POSIX_AIOCB_PROACTOR) ACE_NEW (implementation, ACE_POSIX_AIOCB_Proactor); # elif defined (ACE_POSIX_SIG_PROACTOR) ACE_NEW (implementation, ACE_POSIX_SIG_Proactor); # else /* Default order: CB, SIG, AIOCB */ # if !defined(ACE_HAS_BROKEN_SIGEVENT_STRUCT) ACE_NEW (implementation, ACE_POSIX_CB_Proactor); # else # if defined(ACE_HAS_POSIX_REALTIME_SIGNALS) ACE_NEW (implementation, ACE_POSIX_SIG_Proactor); # else ACE_NEW (implementation, ACE_POSIX_AIOCB_Proactor); # endif /* ACE_HAS_POSIX_REALTIME_SIGNALS */ # endif /* !ACE_HAS_BROKEN_SIGEVENT_STRUCT */ # endif /* ACE_POSIX_AIOCB_PROACTOR */ #elif defined (ACE_WIN32) // WIN_Proactor. ACE_NEW (implementation, ACE_WIN32_Proactor); #endif /* ACE_HAS_AIO_CALLS */ this->implementation (implementation); this->delete_implementation_ = true; } // Set the timer queue. this->timer_queue (tq); // Create the timer handler ACE_NEW (this->timer_handler_, ACE_Proactor_Timer_Handler (*this)); // Activate . if (this->timer_handler_->activate () == -1) ACELIB_ERROR ((LM_ERROR, ACE_TEXT ("%N:%l:(%P | %t):%p\n"), ACE_TEXT ("Task::activate:could not create thread\n"))); } ACE_Proactor::~ACE_Proactor () { this->close (); } ACE_Proactor * ACE_Proactor::instance (size_t /* threads */) { ACE_TRACE ("ACE_Proactor::instance"); if (ACE_Proactor::proactor_ == 0) { // Perform Double-Checked Locking Optimization. ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, *ACE_Static_Object_Lock::instance (), 0)); if (ACE_Proactor::proactor_ == 0) { ACE_NEW_RETURN (ACE_Proactor::proactor_, ACE_Proactor, 0); ACE_Proactor::delete_proactor_ = true; ACE_REGISTER_FRAMEWORK_COMPONENT(ACE_Proactor, ACE_Proactor::proactor_); } } return ACE_Proactor::proactor_; } ACE_Proactor * ACE_Proactor::instance (ACE_Proactor * r, bool delete_proactor) { ACE_TRACE ("ACE_Proactor::instance"); ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, *ACE_Static_Object_Lock::instance (), 0)); ACE_Proactor *t = ACE_Proactor::proactor_; ACE_Proactor::delete_proactor_ = delete_proactor; ACE_Proactor::proactor_ = r; ACE_REGISTER_FRAMEWORK_COMPONENT(ACE_Proactor, ACE_Proactor::proactor_); return t; } void ACE_Proactor::close_singleton () { ACE_TRACE ("ACE_Proactor::close_singleton"); ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex, ace_mon, *ACE_Static_Object_Lock::instance ())); if (ACE_Proactor::delete_proactor_) { delete ACE_Proactor::proactor_; ACE_Proactor::proactor_ = 0; ACE_Proactor::delete_proactor_ = false; } } const ACE_TCHAR * ACE_Proactor::dll_name () { return ACE_TEXT ("ACE"); } const ACE_TCHAR * ACE_Proactor::name () { return ACE_TEXT ("ACE_Proactor"); } int ACE_Proactor::check_reconfiguration (ACE_Proactor *) { #if !defined (ACE_LACKS_ACE_SVCCONF) if (ACE_Service_Config::reconfig_occurred ()) { ACE_Service_Config::reconfigure (); return 1; } #endif /* !ACE_LACKS_ACE_SVCCONF */ return 0; } int ACE_Proactor::proactor_run_event_loop (PROACTOR_EVENT_HOOK eh) { ACE_TRACE ("ACE_Proactor::proactor_run_event_loop"); int result = 0; { ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); // Early check. It is ok to do this without lock, since we care just // whether it is zero or non-zero. if (this->end_event_loop_ != 0) return 0; // First time you are in. Increment the thread count. this->event_loop_thread_count_ ++; } // Run the event loop. for (;;) { // Check the end loop flag. It is ok to do this without lock, // since we care just whether it is zero or non-zero. if (this->end_event_loop_ != 0) break; // is not set. Ready to do . result = this->handle_events (); if (eh != 0 && (*eh) (this)) continue; if (result == -1) break; } // Leaving the event loop. Decrement the thread count. { // Obtain the lock in the MT environments. ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); // Decrement the thread count. this->event_loop_thread_count_ --; if (this->event_loop_thread_count_ > 0 && this->end_event_loop_ != 0) this->proactor_post_wakeup_completions (1); } return result; } // Handle events for -tv- time. handle_events updates -tv- to reflect // time elapsed, so do not return until -tv- == 0, or an error occurs. int ACE_Proactor::proactor_run_event_loop (ACE_Time_Value &tv, PROACTOR_EVENT_HOOK eh) { ACE_TRACE ("ACE_Proactor::proactor_run_event_loop"); int result = 0; { ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); // Early check. It is ok to do this without lock, since we care just // whether it is zero or non-zero. if (this->end_event_loop_ != 0 || tv == ACE_Time_Value::zero) return 0; // First time you are in. Increment the thread count. this->event_loop_thread_count_ ++; } // Run the event loop. for (;;) { // Check the end loop flag. It is ok to do this without lock, // since we care just whether it is zero or non-zero. if (this->end_event_loop_ != 0) break; // is not set. Ready to do . result = this->handle_events (tv); if (eh != 0 && (*eh) (this)) continue; if (result == -1 || result == 0) break; } // Leaving the event loop. Decrement the thread count. { ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); // Decrement the thread count. this->event_loop_thread_count_ --; if (this->event_loop_thread_count_ > 0 && this->end_event_loop_ != 0) this->proactor_post_wakeup_completions (1); } return result; } int ACE_Proactor::proactor_reset_event_loop() { ACE_TRACE ("ACE_Proactor::proactor_reset_event_loop"); // Obtain the lock in the MT environments. ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); this->end_event_loop_ = 0; return 0; } int ACE_Proactor::proactor_end_event_loop () { ACE_TRACE ("ACE_Proactor::proactor_end_event_loop"); int how_many = 0; { // Obtain the lock, set the end flag and post the wakeup // completions. ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); // Set the end flag. this->end_event_loop_ = 1; // Number of completions to post. how_many = this->event_loop_thread_count_; if (how_many == 0) return 0; } // Post completions to all the threads so that they will all wake // up. return this->proactor_post_wakeup_completions (how_many); } int ACE_Proactor::proactor_event_loop_done () { ACE_TRACE ("ACE_Proactor::proactor_event_loop_done"); ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, mutex_, -1)); return this->end_event_loop_ != 0 ? 1 : 0 ; } int ACE_Proactor::close () { // Close the implementation. if (this->implementation ()->close () == -1) ACELIB_ERROR ((LM_ERROR, ACE_TEXT ("%N:%l:(%P | %t):%p\n"), ACE_TEXT ("ACE_Proactor::close: implementation close"))); // Delete the implementation. if (this->delete_implementation_) { delete this->implementation (); this->implementation_ = 0; } // Delete the timer handler. if (this->timer_handler_) { delete this->timer_handler_; this->timer_handler_ = 0; } // Delete the timer queue. if (this->delete_timer_queue_) { delete this->timer_queue_; this->timer_queue_ = 0; this->delete_timer_queue_ = 0; } else if (this->timer_queue_) { this->timer_queue_->close (); this->timer_queue_ = 0; } return 0; } int ACE_Proactor::register_handle (ACE_HANDLE handle, const void *completion_key) { return this->implementation ()->register_handle (handle, completion_key); } long ACE_Proactor::schedule_timer (ACE_Handler &handler, const void *act, const ACE_Time_Value &time) { return this->schedule_timer (handler, act, time, ACE_Time_Value::zero); } long ACE_Proactor::schedule_repeating_timer (ACE_Handler &handler, const void *act, const ACE_Time_Value &interval) { return this->schedule_timer (handler, act, interval, interval); } long ACE_Proactor::schedule_timer (ACE_Handler &handler, const void *act, const ACE_Time_Value &time, const ACE_Time_Value &interval) { // absolute time. ACE_Time_Value absolute_time = this->timer_queue_->gettimeofday () + time; long result = this->timer_queue_->schedule (&handler, act, absolute_time, interval); if (result != -1) { // Signal the timer thread to make sure that new events are // dispatched and the sleep time is updated. (void) this->timer_handler_->signal (); } return result; } int ACE_Proactor::cancel_timer (long timer_id, const void **arg, int dont_call_handle_close) { // No need to singal timer event here. Even if the cancel timer was // the earliest, we will have an extra wakeup. return this->timer_queue_->cancel (timer_id, arg, dont_call_handle_close); } int ACE_Proactor::cancel_timer (ACE_Handler &handler, int dont_call_handle_close) { // No need to signal timer event here. Even if the cancel timer was // the earliest, we will have an extra wakeup. return this->timer_queue_->cancel (&handler, dont_call_handle_close); } int ACE_Proactor::handle_events (ACE_Time_Value &wait_time) { return implementation ()->handle_events (wait_time); } int ACE_Proactor::handle_events () { return this->implementation ()->handle_events (); } int ACE_Proactor::wake_up_dispatch_threads () { return 0; } int ACE_Proactor::close_dispatch_threads (int) { return 0; } size_t ACE_Proactor::number_of_threads () const { return this->implementation ()->number_of_threads (); } void ACE_Proactor::number_of_threads (size_t threads) { this->implementation ()->number_of_threads (threads); } ACE_Proactor_Timer_Queue * ACE_Proactor::timer_queue () const { return this->timer_queue_; } void ACE_Proactor::timer_queue (ACE_Proactor_Timer_Queue *tq) { // Cleanup old timer queue. if (this->delete_timer_queue_) { delete this->timer_queue_; this->delete_timer_queue_ = 0; } else if (this->timer_queue_) { this->timer_queue_->close (); } // New timer queue. if (tq == 0) { ACE_NEW (this->timer_queue_, TIMER_HEAP); this->delete_timer_queue_ = 1; } else { this->timer_queue_ = tq; this->delete_timer_queue_ = 0; } // Set the proactor in the timer queue's functor using TQ_Base = ACE_Timer_Queue_Upcall_Base; TQ_Base * tqb = dynamic_cast (this->timer_queue_); if (tqb != 0) { tqb->upcall_functor ().proactor (*this); } } ACE_HANDLE ACE_Proactor::get_handle () const { return this->implementation ()->get_handle (); } ACE_Proactor_Impl * ACE_Proactor::implementation () const { return this->implementation_; } ACE_Asynch_Read_Stream_Impl * ACE_Proactor::create_asynch_read_stream () { return this->implementation ()->create_asynch_read_stream (); } ACE_Asynch_Write_Stream_Impl * ACE_Proactor::create_asynch_write_stream () { return this->implementation ()->create_asynch_write_stream (); } ACE_Asynch_Read_Dgram_Impl * ACE_Proactor::create_asynch_read_dgram () { return this->implementation ()->create_asynch_read_dgram (); } ACE_Asynch_Write_Dgram_Impl * ACE_Proactor::create_asynch_write_dgram () { return this->implementation ()->create_asynch_write_dgram (); } ACE_Asynch_Read_File_Impl * ACE_Proactor::create_asynch_read_file () { return this->implementation ()->create_asynch_read_file (); } ACE_Asynch_Write_File_Impl * ACE_Proactor::create_asynch_write_file () { return this->implementation ()->create_asynch_write_file (); } ACE_Asynch_Accept_Impl * ACE_Proactor::create_asynch_accept () { return this->implementation ()->create_asynch_accept (); } ACE_Asynch_Connect_Impl * ACE_Proactor::create_asynch_connect () { return this->implementation ()->create_asynch_connect (); } ACE_Asynch_Transmit_File_Impl * ACE_Proactor::create_asynch_transmit_file () { return this->implementation ()->create_asynch_transmit_file (); } ACE_Asynch_Read_Stream_Result_Impl * ACE_Proactor::create_asynch_read_stream_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_read, const void* act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_read_stream_result (handler_proxy, handle, message_block, bytes_to_read, act, event, priority, signal_number); } ACE_Asynch_Write_Stream_Result_Impl * ACE_Proactor::create_asynch_write_stream_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_write, const void* act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_write_stream_result (handler_proxy, handle, message_block, bytes_to_write, act, event, priority, signal_number); } ACE_Asynch_Read_File_Result_Impl * ACE_Proactor::create_asynch_read_file_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_read, const void* act, u_long offset, u_long offset_high, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_read_file_result (handler_proxy, handle, message_block, bytes_to_read, act, offset, offset_high, event, priority, signal_number); } ACE_Asynch_Write_File_Result_Impl * ACE_Proactor::create_asynch_write_file_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE handle, ACE_Message_Block &message_block, u_long bytes_to_write, const void* act, u_long offset, u_long offset_high, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_write_file_result (handler_proxy, handle, message_block, bytes_to_write, act, offset, offset_high, event, priority, signal_number); } ACE_Asynch_Read_Dgram_Result_Impl * ACE_Proactor::create_asynch_read_dgram_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE handle, ACE_Message_Block *message_block, size_t bytes_to_read, int flags, int protocol_family, const void* act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation()->create_asynch_read_dgram_result (handler_proxy, handle, message_block, bytes_to_read, flags, protocol_family, act, event, priority, signal_number); } ACE_Asynch_Write_Dgram_Result_Impl * ACE_Proactor::create_asynch_write_dgram_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE handle, ACE_Message_Block *message_block, size_t bytes_to_write, int flags, const void* act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation()->create_asynch_write_dgram_result (handler_proxy, handle, message_block, bytes_to_write, flags, act, event, priority, signal_number); } ACE_Asynch_Accept_Result_Impl * ACE_Proactor::create_asynch_accept_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE listen_handle, ACE_HANDLE accept_handle, ACE_Message_Block &message_block, u_long bytes_to_read, const void* act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_accept_result (handler_proxy, listen_handle, accept_handle, message_block, bytes_to_read, act, event, priority, signal_number); } ACE_Asynch_Connect_Result_Impl * ACE_Proactor::create_asynch_connect_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE connect_handle, const void* act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_connect_result (handler_proxy, connect_handle, act, event, priority, signal_number); } ACE_Asynch_Transmit_File_Result_Impl * ACE_Proactor::create_asynch_transmit_file_result (ACE_Handler::Proxy_Ptr &handler_proxy, ACE_HANDLE socket, ACE_HANDLE file, ACE_Asynch_Transmit_File::Header_And_Trailer *header_and_trailer, u_long bytes_to_write, u_long offset, u_long offset_high, u_long bytes_per_send, u_long flags, const void *act, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_transmit_file_result (handler_proxy, socket, file, header_and_trailer, bytes_to_write, offset, offset_high, bytes_per_send, flags, act, event, priority, signal_number); } ACE_Asynch_Result_Impl * ACE_Proactor::create_asynch_timer (ACE_Handler::Proxy_Ptr &handler_proxy, const void *act, const ACE_Time_Value &tv, ACE_HANDLE event, int priority, int signal_number) { return this->implementation ()->create_asynch_timer (handler_proxy, act, tv, event, priority, signal_number); } int ACE_Proactor::proactor_post_wakeup_completions (int how_many) { return this->implementation ()->post_wakeup_completions (how_many); } void ACE_Proactor::implementation (ACE_Proactor_Impl *implementation) { this->implementation_ = implementation; } ACE_END_VERSIONED_NAMESPACE_DECL #else /* !ACE_WIN32 || !ACE_HAS_AIO_CALLS */ ACE_BEGIN_VERSIONED_NAMESPACE_DECL ACE_Proactor * ACE_Proactor::instance (size_t /* threads */) { return 0; } ACE_Proactor * ACE_Proactor::instance (ACE_Proactor *) { return 0; } void ACE_Proactor::close_singleton () { } int ACE_Proactor::run_event_loop () { // not implemented return -1; } int ACE_Proactor::run_event_loop (ACE_Time_Value &) { // not implemented return -1; } int ACE_Proactor::end_event_loop () { // not implemented return -1; } sig_atomic_t ACE_Proactor::event_loop_done () { return sig_atomic_t (1); } ACE_END_VERSIONED_NAMESPACE_DECL #endif /* ACE_HAS_WIN32_OVERLAPPED_IO || ACE_HAS_AIO_CALLS */