// -*- C++ -*- //============================================================================= /** * @file Global_Macros.h * * @author Douglas C. Schmidt * @author Jesper S. M|ller * @author and a cast of thousands... * * This one is split from the famous OS.h */ //============================================================================= #ifndef ACE_GLOBAL_MACROS_H #define ACE_GLOBAL_MACROS_H #include /**/ "ace/pre.h" // Included just keep compilers that see #pragma directive first // happy. #include /**/ "ace/ACE_export.h" #if !defined (ACE_LACKS_PRAGMA_ONCE) # pragma once #endif /* ACE_LACKS_PRAGMA_ONCE */ #include /**/ "ace/config-lite.h" #include "ace/Assert.h" // For ACE_ASSERT // Start Global Macros # define ACE_BEGIN_DUMP ACE_TEXT ("\n====\n(%P|%t|%x)\n") # define ACE_END_DUMP ACE_TEXT ("====\n") # if defined (ACE_NDEBUG) # define ACE_DB(X) # else # define ACE_DB(X) X # endif /* ACE_NDEBUG */ // Turn a number into a string. # define ACE_ITOA(X) #X // Create a string of a server address with a "host:port" format. # define ACE_SERVER_ADDRESS(H,P) H ACE_TEXT(":") P // A couple useful inline functions for checking whether bits are // enabled or disabled. // Efficiently returns the least power of two >= X... # define ACE_POW(X) (((X) == 0)?1:(X-=1,X|=X>>1,X|=X>>2,X|=X>>4,X|=X>>8,X|=X>>16,(++X))) # define ACE_EVEN(NUM) (((NUM) & 1) == 0) # define ACE_ODD(NUM) (((NUM) & 1) == 1) # define ACE_BIT_ENABLED(WORD, BIT) (((WORD) & (BIT)) != 0) # define ACE_BIT_DISABLED(WORD, BIT) (((WORD) & (BIT)) == 0) # define ACE_BIT_CMP_MASK(WORD, BIT, MASK) (((WORD) & (BIT)) == MASK) # define ACE_SET_BITS(WORD, BITS) (WORD |= (BITS)) # define ACE_CLR_BITS(WORD, BITS) (WORD &= ~(BITS)) #if !defined (ACE_HAS_CPP14) # error ACE/TAO require C++14 compliance, please upgrade your compiler and/or fix the platform configuration for your environment #endif #define ACE_UNIMPLEMENTED_FUNC(f) f = delete; // noexcept(false) specification to specify that the operation can // throw an exception #define ACE_NOEXCEPT_FALSE noexcept(false) // ---------------------------------------------------------------- // FUZZ: disable check_for_ACE_Guard /* Convenient macro for testing for deadlock, as well as for detecting * when mutexes fail. * * The parameters to the ACE_GUARD_XXX macros are used as follows: * * MUTEX - This is the type used as the template parameter for ACE_Guard * * OBJ - Name for the guard object. This name should not be declared * outside the macro. * * LOCK - The actual lock (mutex) variable. This should be a variable * of type MUTEX, see above. * * ACTION - Code segment to be run, if and only if the lock is * acquired. * * REACTION - Code segment to be run, if and only if the lock is not * acquired. * * RETURN - A value to be returned from the calling function, if and * only if the lock is not acquired. * * @warning * Use of ACE_GUARD() is rarely correct. ACE_GUARD() causes the * current function to return if the lock is not acquired. Since * merely returning (no value) almost certainly fails to handle the * acquisition failure and almost certainly fails to communicate the * failure to the caller for the caller to handle, ACE_GUARD() is * almost always the wrong thing to do. The same goes for * ACE_WRITE_GUARD() and ACE_READ_GUARD() . ACE_GUARD_REACTION() is * better because it lets you specify error handling code. */ #if !defined (ACE_GUARD_ACTION) #define ACE_GUARD_ACTION(MUTEX, OBJ, LOCK, ACTION, REACTION) \ ACE_Guard< MUTEX > OBJ (LOCK); \ if (OBJ.locked () != 0) { ACTION; } \ else { REACTION; } #endif /* !ACE_GUARD_ACTION */ #if !defined (ACE_GUARD_REACTION) #define ACE_GUARD_REACTION(MUTEX, OBJ, LOCK, REACTION) \ ACE_GUARD_ACTION(MUTEX, OBJ, LOCK, ;, REACTION) #endif /* !ACE_GUARD_REACTION */ #if !defined (ACE_GUARD) #define ACE_GUARD(MUTEX, OBJ, LOCK) \ ACE_GUARD_REACTION(MUTEX, OBJ, LOCK, return) #endif /* !ACE_GUARD */ #if !defined (ACE_GUARD_RETURN) #define ACE_GUARD_RETURN(MUTEX, OBJ, LOCK, RETURN) \ ACE_GUARD_REACTION(MUTEX, OBJ, LOCK, return RETURN) #endif /* !ACE_GUARD_RETURN */ #if !defined (ACE_WRITE_GUARD) # define ACE_WRITE_GUARD(MUTEX,OBJ,LOCK) \ ACE_Write_Guard< MUTEX > OBJ (LOCK); \ if (OBJ.locked () == 0) return; #endif /* !ACE_WRITE_GUARD */ #if !defined (ACE_WRITE_GUARD_RETURN) # define ACE_WRITE_GUARD_RETURN(MUTEX,OBJ,LOCK,RETURN) \ ACE_Write_Guard< MUTEX > OBJ (LOCK); \ if (OBJ.locked () == 0) return RETURN; #endif /* ACE_WRITE_GUARD_RETURN */ #if !defined (ACE_READ_GUARD) # define ACE_READ_GUARD(MUTEX,OBJ,LOCK) \ ACE_Read_Guard< MUTEX > OBJ (LOCK); \ if (OBJ.locked () == 0) return; #endif /* !ACE_READ_GUARD */ #if !defined (ACE_READ_GUARD_RETURN) # define ACE_READ_GUARD_RETURN(MUTEX,OBJ,LOCK,RETURN) \ ACE_Read_Guard< MUTEX > OBJ (LOCK); \ if (OBJ.locked () == 0) return RETURN; #endif /* !ACE_READ_GUARD_RETURN */ // FUZZ: enable check_for_ACE_Guard // ---------------------------------------------------------------- #if defined(ACE_UNEXPECTED_RETURNS) /* Using ACE_UNEXPECTED_RETURNS is ill-advised because, in many cases, * it fails to inform callers of the error condition. * It exists mainly to provide back-compatibility with old, dangerous, * incorrect behavior. * Code that previously used ACE_GUARD() or ACE_GUARD_RETURN() to return * upon failure to acquire a lock can now use: * ACE_GUARD_REACTION(..., ACE_UNEXPECTED(...)) * The behavior of this depends on whether or not ACE_UNEXPECTED_RETURNS * is defined. If so, it just returns upon failure (as in the original), * which is usually dangerous because it usually fails to handle the * error. If not, it calls std::unexpected(), which does whatever the * std::unexpected handler does (which is to abort, by default). */ # define ACE_UNEXPECTED(RETVAL) \ do { \ return RETVAL; \ } while (0) #else # define ACE_UNEXPECTED(RETVAL) \ do { \ std::unexpected(); \ } while (0) #endif // ---------------------------------------------------------------- # define ACE_DES_NOFREE(POINTER,CLASS) \ do { \ if (POINTER) \ { \ (POINTER)->~CLASS (); \ } \ } \ while (0) # define ACE_DES_ARRAY_NOFREE(POINTER,SIZE,CLASS) \ do { \ if (POINTER) \ { \ for (size_t i = 0; \ i < SIZE; \ ++i) \ { \ (&(POINTER)[i])->~CLASS (); \ } \ } \ } \ while (0) # define ACE_DES_FREE(POINTER,DEALLOCATOR,CLASS) \ do { \ if (POINTER) \ { \ (POINTER)->~CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) # define ACE_DES_FREE_THIS(DEALLOCATOR,CLASS) \ do { \ this->~CLASS (); \ DEALLOCATOR (this); \ } \ while (0) # define ACE_DES_ARRAY_FREE(POINTER,SIZE,DEALLOCATOR,CLASS) \ do { \ if (POINTER) \ { \ for (size_t i = 0; \ i < SIZE; \ ++i) \ { \ (&(POINTER)[i])->~CLASS (); \ } \ DEALLOCATOR (POINTER); \ } \ } \ while (0) # define ACE_DES_NOFREE_TEMPLATE(POINTER,T_CLASS,T_PARAMETER) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ } \ } \ while (0) # define ACE_DES_ARRAY_NOFREE_TEMPLATE(POINTER,SIZE,T_CLASS,T_PARAMETER) \ do { \ if (POINTER) \ { \ for (size_t i = 0; \ i < SIZE; \ ++i) \ { \ (&(POINTER)[i])->~T_CLASS (); \ } \ } \ } \ while (0) #if defined (ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) # define ACE_DES_FREE_TEMPLATE(POINTER,DEALLOCATOR,T_CLASS,T_PARAMETER) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS T_PARAMETER (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #else # define ACE_DES_FREE_TEMPLATE(POINTER,DEALLOCATOR,T_CLASS,T_PARAMETER) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #endif /* defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) */ # define ACE_DES_ARRAY_FREE_TEMPLATE(POINTER,SIZE,DEALLOCATOR,T_CLASS,T_PARAMETER) \ do { \ if (POINTER) \ { \ for (size_t i = 0; \ i < SIZE; \ ++i) \ { \ (&(POINTER)[i])->~T_CLASS (); \ } \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #if defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) # define ACE_DES_FREE_TEMPLATE2(POINTER,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #else # define ACE_DES_FREE_TEMPLATE2(POINTER,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #endif /* defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) */ #if defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) # define ACE_DES_FREE_TEMPLATE3(POINTER,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2,T_PARAM3) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #else # define ACE_DES_FREE_TEMPLATE3(POINTER,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2,T_PARAM3) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #endif /* defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) */ #if defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) # define ACE_DES_FREE_TEMPLATE4(POINTER,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2,T_PARAM3, T_PARAM4) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #else # define ACE_DES_FREE_TEMPLATE4(POINTER,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2,T_PARAM3, T_PARAM4) \ do { \ if (POINTER) \ { \ (POINTER)->~T_CLASS (); \ DEALLOCATOR (POINTER); \ } \ } \ while (0) #endif /* defined(ACE_EXPLICIT_TEMPLATE_DESTRUCTOR_TAKES_ARGS) */ # define ACE_DES_ARRAY_FREE_TEMPLATE2(POINTER,SIZE,DEALLOCATOR,T_CLASS,T_PARAM1,T_PARAM2) \ do { \ if (POINTER) \ { \ for (size_t i = 0; \ i < SIZE; \ ++i) \ { \ (&(POINTER)[i])->~T_CLASS (); \ } \ DEALLOCATOR (POINTER); \ } \ } \ while (0) /*******************************************************************/ /// Service Objects, i.e., objects dynamically loaded via the service /// configurator, must provide a destructor function with the /// following prototype to perform object cleanup. typedef void (*ACE_Service_Object_Exterminator)(void *); /** @name Service Configurator macros * * The following macros are used to define helper objects used in * ACE's Service Configurator framework, which is described in * Chapter 5 of C++NPv2 . This * framework implements the Component Configurator pattern, which is * described in Chapter 2 of POSA2 . * The intent of this pattern is to allow developers to dynamically * load and configure services into a system. With a little help from * this macros statically linked services can also be dynamically * configured. * * More details about this component are available in the documentation * of the ACE_Service_Configurator class and also * ACE_Dynamic_Service. * * Notice that in all the macros the SERVICE_CLASS parameter must be * the name of a class derived from ACE_Service_Object. */ //@{ /// Declare a the data structure required to register a statically /// linked service into the service configurator. /** * The macro should be used in the header file where the service is * declared, its only argument is usually the name of the class that * implements the service. * * @param SERVICE_CLASS The name of the class implementing the * service. */ # define ACE_STATIC_SVC_DECLARE(SERVICE_CLASS) \ extern ACE_Static_Svc_Descriptor ace_svc_desc_##SERVICE_CLASS ; /// As ACE_STATIC_SVC_DECLARE, but using an export macro for NT /// compilers. /** * NT compilers require the use of explicit directives to export and * import symbols from a DLL. If you need to define a service in a * dynamic library you should use this version instead. * Normally ACE uses a macro to inject the correct export/import * directives on NT. Naturally it also the macro expands to a blank * on platforms that do not require such directives. * The first argument (EXPORT_NAME) is the prefix for this export * macro, the full name is formed by appending _Export. * ACE provides tools to generate header files that define the macro * correctly on all platforms, please see * $ACE_ROOT/bin/generate_export_file.pl * * @param EXPORT_NAME The export macro name prefix. * @param SERVICE_CLASS The name of the class implementing the service. */ #define ACE_STATIC_SVC_DECLARE_EXPORT(EXPORT_NAME,SERVICE_CLASS) \ extern EXPORT_NAME##_Export ACE_Static_Svc_Descriptor ace_svc_desc_##SERVICE_CLASS; /// Define the data structure used to register a statically linked /// service into the Service Configurator. /** * The service configurator requires several arguments to build and * control an statically linked service, including its name, the * factory function used to construct the service, and some flags. * All those parameters are configured in a single structure, an * instance of this structure is statically initialized using the * following macro. * * @param SERVICE_CLASS The name of the class that implements the * service, must be derived (directly or indirectly) from * ACE_Service_Object. * @param NAME The name for this service, this name is used by the * service configurator to match configuration options provided in * the svc.conf file. * @param TYPE The type of object. Objects can be streams or service * objects. Please read the ACE_Service_Configurator and ASX * documentation for more details. * @param FN The name of the factory function, usually the * ACE_SVC_NAME macro can be used to generate the name. The * factory function is often defined using ACE_FACTORY_DECLARE and * ACE_FACTORY_DEFINE. * @param FLAGS Flags to control the ownership and lifecycle of the * object. Please read the ACE_Service_Configurator documentation * for more details. * @param ACTIVE If not zero then a thread will be dedicate to the * service. Please read the ACE_Service_Configurator documentation * for more details. */ # define ACE_STATIC_SVC_DEFINE(SERVICE_CLASS, NAME, TYPE, FN, FLAGS, ACTIVE) \ ACE_Static_Svc_Descriptor ace_svc_desc_##SERVICE_CLASS = { NAME, TYPE, FN, FLAGS, ACTIVE }; /// Automatically register a service with the service configurator /** * In some applications the services must be automatically registered * with the service configurator, before main() starts. * The ACE_STATIC_SVC_REQUIRE macro defines a class whose constructor * register the service, it also defines a static instance of that * class to ensure that the service is registered before main. * * On platforms that lack adequate support for static C++ objects the * macro ACE_STATIC_SVC_REGISTER can be used to explicitly register * the service. * * @todo One class per-Service_Object seems wasteful. It should be * possible to define a single class and re-use it for all the * service objects, just by passing the Service_Descriptor as an * argument to the constructor. */ #if defined(ACE_LACKS_STATIC_CONSTRUCTORS) # define ACE_STATIC_SVC_REQUIRE(SERVICE_CLASS)\ class ACE_Static_Svc_##SERVICE_CLASS {\ public:\ ACE_Static_Svc_##SERVICE_CLASS() { \ ACE_Service_Config::insert (\ &ace_svc_desc_##SERVICE_CLASS); \ } \ }; #define ACE_STATIC_SVC_REGISTER(SERVICE_CLASS)\ ACE_Static_Svc_##SERVICE_CLASS ace_static_svc_##SERVICE_CLASS #else /* !ACE_LACKS_STATIC_CONSTRUCTORS */ # define ACE_STATIC_SVC_REQUIRE(SERVICE_CLASS)\ class ACE_Static_Svc_##SERVICE_CLASS {\ public:\ ACE_Static_Svc_##SERVICE_CLASS() { \ ACE_Service_Config::insert (\ &ace_svc_desc_##SERVICE_CLASS); \ } \ };\ static ACE_Static_Svc_##SERVICE_CLASS ace_static_svc_##SERVICE_CLASS; #define ACE_STATIC_SVC_REGISTER(SERVICE_CLASS) do {} while (0) #endif /* !ACE_LACKS_STATIC_CONSTRUCTORS */ // Preprocessor symbols will not be expanded if they are // concatenated. Force the preprocessor to expand them during the // argument prescan by calling a macro that itself calls another that // performs the actual concatenation. #define ACE_PREPROC_CONCATENATE_IMPL(A,B) A ## B #define ACE_PREPROC_CONCATENATE(A,B) ACE_PREPROC_CONCATENATE_IMPL(A,B) #if defined (ACE_HAS_VERSIONED_NAMESPACE) && ACE_HAS_VERSIONED_NAMESPACE == 1 // Preprocessor symbols will not be expanded if they are // concatenated. Force the preprocessor to expand them during the // argument prescan by calling a macro that itself calls another that // performs the actual concatenation. # define ACE_MAKE_SVC_CONFIG_FUNCTION_NAME(PREFIX,VERSIONED_NAMESPACE,SERVICE_CLASS) PREFIX ## _ ## VERSIONED_NAMESPACE ## _ ## SERVICE_CLASS #else # define ACE_MAKE_SVC_CONFIG_FUNCTION_NAME(PREFIX,VERSIONED_NAMESPACE,SERVICE_CLASS) PREFIX ## _ ## SERVICE_CLASS #endif /* ACE_HAS_VERSIONED_NAMESPACE == 1 */ #define ACE_MAKE_SVC_CONFIG_FACTORY_NAME(VERSIONED_NAMESPACE,SERVICE_CLASS) ACE_MAKE_SVC_CONFIG_FUNCTION_NAME(_make,VERSIONED_NAMESPACE,SERVICE_CLASS) #define ACE_MAKE_SVC_CONFIG_GOBBLER_NAME(VERSIONED_NAMESPACE,SERVICE_CLASS) ACE_MAKE_SVC_CONFIG_FUNCTION_NAME(_gobble,VERSIONED_NAMESPACE,SERVICE_CLASS) /// Declare the factory method used to create dynamically loadable /// services. /** * Once the service implementation is dynamically loaded the Service * Configurator uses a factory method to create the object. * This macro declares such a factory function with the proper * interface and export macros. * Normally used in the header file that declares the service * implementation. * * @param CLS must match the prefix of the export macro used for this * service. * @param SERVICE_CLASS must match the name of the class that * implements the service. */ # define ACE_FACTORY_DECLARE(CLS,SERVICE_CLASS) \ extern "C" CLS##_Export ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object * \ ACE_MAKE_SVC_CONFIG_FACTORY_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS) (ACE_Service_Object_Exterminator *); /// Define the factory method (and destructor) for a dynamically /// loadable service. /** * Use with arguments matching ACE_FACTORY_DECLARE. * Normally used in the .cpp file that defines the service * implementation. * * This macro defines both the factory method and the function used to * cleanup the service object. * * If this macro is used to define a factory function that need not be * exported (for example, in a static service situation), CLS can be * specified as ACE_Local_Service. */ # define ACE_Local_Service_Export #define ACE_FACTORY_DEFINE(CLS,SERVICE_CLASS) \ void ACE_MAKE_SVC_CONFIG_GOBBLER_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS) (void *p) { \ ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object * _p = \ static_cast< ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object *> (p); \ ACE_ASSERT (_p != 0); \ delete _p; } \ extern "C" CLS##_Export ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object *\ ACE_MAKE_SVC_CONFIG_FACTORY_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS) (ACE_Service_Object_Exterminator *gobbler) \ { \ ACE_TRACE (#SERVICE_CLASS); \ if (gobbler != 0) \ *gobbler = (ACE_Service_Object_Exterminator) ACE_MAKE_SVC_CONFIG_GOBBLER_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS); \ return new SERVICE_CLASS; \ } /** * For service classes scoped within namespaces, use this macro in * place of ACE_FACTORY_DEFINE. The third argument in this case is * the fully scoped name of the class as it is to be * instantiated. For example, given: * namespace ACE * { * namespace Foo * { * class Bar : public ACE_Service_Object * {}; * }; * }; * * ACE_FACTORY_DECLARE(ACE,ACE_Foo_Bar) * * you would then use: * * ACE_FACTORY_NAMESPACE_DEFINE(ACE,ACE_Foo_Bar,ACE::Foo::Bar) * * Note that in this example, the ACE_FACTORY_DECLARE is done outside * the namespace scope. Then, the SERVICE_CLASS name is the same as * the fully scoped class name, but with '::' replaced with '_'. Doing * this will ensure unique generated signatures for the various C * style functions. */ #define ACE_FACTORY_NAMESPACE_DEFINE(CLS,SERVICE_CLASS,NAMESPACE_CLASS) \ void ACE_MAKE_SVC_CONFIG_GOBBLER_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS) (void *p) { \ ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object * _p = \ static_cast< ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object *> (p); \ ACE_ASSERT (_p != 0); \ delete _p; } \ extern "C" CLS##_Export ACE_VERSIONED_NAMESPACE_NAME::ACE_Service_Object *\ ACE_MAKE_SVC_CONFIG_FACTORY_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS) (ACE_Service_Object_Exterminator *gobbler) \ { \ ACE_TRACE (#SERVICE_CLASS); \ if (gobbler != 0) \ *gobbler = (ACE_Service_Object_Exterminator) ACE_MAKE_SVC_CONFIG_GOBBLER_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS); \ return new NAMESPACE_CLASS; \ } /// The canonical name for a service factory method # define ACE_SVC_NAME(SERVICE_CLASS) ACE_MAKE_SVC_CONFIG_FACTORY_NAME(ACE_VERSIONED_NAMESPACE_NAME,SERVICE_CLASS) /// The canonical way to invoke (i.e. construct) a service factory /// method. #define ACE_SVC_INVOKE(SERVICE_CLASS) ACE_SVC_NAME(SERVICE_CLASS) (0) //@} /** @name Helper macros for services defined in the netsvcs library. * * The ACE services defined in netsvcs use this helper macros for * simplicity. */ //@{ # define ACE_SVC_FACTORY_DECLARE(X) ACE_FACTORY_DECLARE (ACE_Svc, X) # define ACE_SVC_FACTORY_DEFINE(X) ACE_FACTORY_DEFINE (ACE_Svc, X) //@} #if !defined (ACE_WIN32) // Add some typedefs and macros to enhance Win32 conformance... # if !defined (LPSECURITY_ATTRIBUTES) # define LPSECURITY_ATTRIBUTES int # endif /* !defined LPSECURITY_ATTRIBUTES */ # if !defined (GENERIC_READ) # define GENERIC_READ 0 # endif /* !defined GENERIC_READ */ # if !defined (FILE_SHARE_READ) # define FILE_SHARE_READ 0 # endif /* !defined FILE_SHARE_READ */ # if !defined (OPEN_EXISTING) # define OPEN_EXISTING 0 # endif /* !defined OPEN_EXISTING */ # if !defined (FILE_ATTRIBUTE_NORMAL) # define FILE_ATTRIBUTE_NORMAL 0 # endif /* !defined FILE_ATTRIBUTE_NORMAL */ # if !defined (MAXIMUM_WAIT_OBJECTS) # define MAXIMUM_WAIT_OBJECTS 0 # endif /* !defined MAXIMUM_WAIT_OBJECTS */ # if !defined (FILE_FLAG_OVERLAPPED) # define FILE_FLAG_OVERLAPPED 0 # endif /* !defined FILE_FLAG_OVERLAPPED */ # if !defined (FILE_FLAG_SEQUENTIAL_SCAN) # define FILE_FLAG_SEQUENTIAL_SCAN 0 # endif /* FILE_FLAG_SEQUENTIAL_SCAN */ # if !defined(FILE_FLAG_WRITE_THROUGH) # define FILE_FLAG_WRITE_THROUGH 0 # endif /* !defined FILE_FLAG_WRITE_THROUGH */ # if !defined(PIPE_WAIT) # define PIPE_WAIT 0 # endif /* !defined PIPE_WAIT */ # if !defined(PIPE_NOWAIT) # define PIPE_NOWAIT 0 # endif /* !defined PIPE_WAIT */ # if !defined(PIPE_READMODE_BYTE) # define PIPE_READMODE_BYTE 0 # endif /* !defined PIPE_READMODE_BYTE */ # if !defined(PIPE_READMODE_MESSAGE) # define PIPE_READMODE_MESSAGE 0 # endif /* !defined PIPE_READMODE_MESSAGE */ # if !defined(PIPE_TYPE_BYTE) # define PIPE_TYPE_BYTE 0 # endif /* !defined PIPE_TYPE_BYTE */ # if !defined(PIPE_TYPE_MESSAGE) # define PIPE_TYPE_MESSAGE 0 # endif /* !defined PIPE_TYPE_MESSAGE */ #endif /* !ACE_WIN32 */ // Some useful abstractions for expressions involving // ACE_Allocator.malloc (). The difference between ACE_NEW_MALLOC* // with ACE_ALLOCATOR* is that they call constructors also. #include "ace/OS_Errno.h" /* Need errno and ENOMEM */ # define ACE_ALLOCATOR_RETURN(POINTER,ALLOCATOR,RET_VAL) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return RET_VAL; } \ } while (0) # define ACE_ALLOCATOR(POINTER,ALLOCATOR) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return; } \ } while (0) # define ACE_ALLOCATOR_NORETURN(POINTER,ALLOCATOR) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; } \ } while (0) # define ACE_NEW_MALLOC_RETURN(POINTER,ALLOCATOR,CONSTRUCTOR,RET_VAL) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return RET_VAL;} \ else { (void) new (POINTER) CONSTRUCTOR; } \ } while (0) # define ACE_NEW_MALLOC(POINTER,ALLOCATOR,CONSTRUCTOR) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return;} \ else { (void) new (POINTER) CONSTRUCTOR; } \ } while (0) # define ACE_NEW_MALLOC_NORETURN(POINTER,ALLOCATOR,CONSTRUCTOR) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM;} \ else { (void) new (POINTER) CONSTRUCTOR; } \ } while (0) /* ACE_Metrics */ #if defined ACE_LACKS_ARRAY_PLACEMENT_NEW # define ACE_NEW_MALLOC_ARRAY_RETURN(POINTER,ALLOCATOR,CONSTRUCTOR,COUNT,RET_VAL) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return RET_VAL;} \ else { for (u_int i = 0; i < COUNT; ++i) \ {(void) new (POINTER) CONSTRUCTOR; ++POINTER;} \ POINTER -= COUNT;} \ } while (0) # define ACE_NEW_MALLOC_ARRAY(POINTER,ALLOCATOR,CONSTRUCTOR,COUNT) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return;} \ else { for (u_int i = 0; i < COUNT; ++i) \ {(void) new (POINTER) CONSTRUCTOR; ++POINTER;} \ POINTER -= COUNT;} \ } while (0) #else /* ! defined ACE_LACKS_ARRAY_PLACEMENT_NEW */ # define ACE_NEW_MALLOC_ARRAY_RETURN(POINTER,ALLOCATOR,CONSTRUCTOR,COUNT,RET_VAL) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return RET_VAL;} \ else { (void) new (POINTER) CONSTRUCTOR [COUNT]; } \ } while (0) # define ACE_NEW_MALLOC_ARRAY(POINTER,ALLOCATOR,CONSTRUCTOR,COUNT) \ do { POINTER = ALLOCATOR; \ if (POINTER == 0) { errno = ENOMEM; return;} \ else { (void) new (POINTER) CONSTRUCTOR [COUNT]; } \ } while (0) #endif /* defined ACE_LACKS_ARRAY_PLACEMENT_NEW */ // This is being placed here temporarily to help stabilize the builds, but will // be moved out along with the above macros as part of the subsetting. dhinton #if !defined (ACE_LACKS_NEW_H) # include /**/ #endif /* ! ACE_LACKS_NEW_H */ # define ACE_NOOP(x) #if defined (ACE_HAS_WIN32_STRUCTURED_EXCEPTIONS) # define ACE_SEH_TRY __try # define ACE_SEH_EXCEPT(X) __except(X) # define ACE_SEH_FINALLY __finally #else /* !ACE_HAS_WIN32_STRUCTURED_EXCEPTIONS */ # define ACE_SEH_TRY if (1) # define ACE_SEH_EXCEPT(X) while (0) # define ACE_SEH_FINALLY if (1) #endif /* ACE_HAS_WIN32_STRUCTURED_EXCEPTIONS */ // Handle ACE_Message_Queue. # define ACE_SYNCH_DECL typename _ACE_SYNCH # define ACE_SYNCH_USE _ACE_SYNCH # define ACE_SYNCH_MUTEX_T typename _ACE_SYNCH::MUTEX # define ACE_SYNCH_CONDITION_T typename _ACE_SYNCH::CONDITION # define ACE_SYNCH_SEMAPHORE_T typename _ACE_SYNCH::SEMAPHORE // Handle ACE_Malloc* # define ACE_MEM_POOL_1 typename _ACE_MEM_POOL # define ACE_MEM_POOL_2 _ACE_MEM_POOL # define ACE_MEM_POOL _ACE_MEM_POOL # define ACE_MEM_POOL_OPTIONS typename _ACE_MEM_POOL::OPTIONS // @deprecated These macros are not longer used in ACE_Svc_Handler. // Handle ACE_Svc_Handler # define ACE_PEER_STREAM_1 typename _ACE_PEER_STREAM # define ACE_PEER_STREAM_2 _ACE_PEER_STREAM # define ACE_PEER_STREAM _ACE_PEER_STREAM # define ACE_PEER_STREAM_ADDR typename _ACE_PEER_STREAM::PEER_ADDR // @deprecated These macros are not longer used in ACE_Acceptor. // Handle ACE_Acceptor # define ACE_PEER_ACCEPTOR_1 typename _ACE_PEER_ACCEPTOR # define ACE_PEER_ACCEPTOR_2 _ACE_PEER_ACCEPTOR # define ACE_PEER_ACCEPTOR _ACE_PEER_ACCEPTOR # define ACE_PEER_ACCEPTOR_ADDR typename _ACE_PEER_ACCEPTOR::PEER_ADDR // @deprecated These macros are not longer used in ACE_Connector. // Handle ACE_Connector # define ACE_PEER_CONNECTOR_1 typename _ACE_PEER_CONNECTOR # define ACE_PEER_CONNECTOR_2 _ACE_PEER_CONNECTOR # define ACE_PEER_CONNECTOR _ACE_PEER_CONNECTOR # define ACE_PEER_CONNECTOR_ADDR typename ACE_PEER_CONNECTOR::PEER_ADDR # define ACE_PEER_CONNECTOR_ADDR_ANY ACE_PEER_ADDR_TYPEDEF::sap_any // Handle ACE_SOCK_* # define ACE_SOCK_ACCEPTOR ACE_SOCK_Acceptor # define ACE_SOCK_CONNECTOR ACE_SOCK_Connector # define ACE_SOCK_STREAM ACE_SOCK_Stream # define ACE_SOCK_DGRAM ACE_SOCK_Dgram # define ACE_SOCK_DGRAM_BCAST ACE_SOCK_Dgram_Bcast # define ACE_SOCK_DGRAM_MCAST ACE_SOCK_Dgram_Mcast // Handle ACE_SOCK_SEQPACK_* # define ACE_SOCK_SEQPACK_ACCEPTOR ACE_SOCK_SEQPACK_Acceptor # define ACE_SOCK_SEQPACK_CONNECTOR ACE_SOCK_SEQPACK_Connector # define ACE_SOCK_SEQPACK_ASSOCIATION ACE_SOCK_SEQPACK_Association // Handle ACE_MEM_* # define ACE_MEM_ACCEPTOR ACE_MEM_Acceptor # define ACE_MEM_CONNECTOR ACE_MEM_Connector # define ACE_MEM_STREAM ACE_MEM_Stream // Handle ACE_LSOCK_* # define ACE_LSOCK_ACCEPTOR ACE_LSOCK_Acceptor # define ACE_LSOCK_CONNECTOR ACE_LSOCK_Connector # define ACE_LSOCK_STREAM ACE_LSOCK_Stream // Handle ACE_TLI_* # define ACE_TLI_ACCEPTOR ACE_TLI_Acceptor # define ACE_TLI_CONNECTOR ACE_TLI_Connector # define ACE_TLI_STREAM ACE_TLI_Stream // Handle ACE_SPIPE_* # define ACE_SPIPE_ACCEPTOR ACE_SPIPE_Acceptor # define ACE_SPIPE_CONNECTOR ACE_SPIPE_Connector # define ACE_SPIPE_STREAM ACE_SPIPE_Stream // Handle ACE_UPIPE_* # define ACE_UPIPE_ACCEPTOR ACE_UPIPE_Acceptor # define ACE_UPIPE_CONNECTOR ACE_UPIPE_Connector # define ACE_UPIPE_STREAM ACE_UPIPE_Stream // Handle ACE_*_Memory_Pool. # define ACE_MMAP_MEMORY_POOL ACE_MMAP_Memory_Pool # define ACE_LITE_MMAP_MEMORY_POOL ACE_Lite_MMAP_Memory_Pool # define ACE_SBRK_MEMORY_POOL ACE_Sbrk_Memory_Pool # define ACE_SHARED_MEMORY_POOL ACE_Shared_Memory_Pool # define ACE_LOCAL_MEMORY_POOL ACE_Local_Memory_Pool # define ACE_PAGEFILE_MEMORY_POOL ACE_Pagefile_Memory_Pool #include /**/ "ace/post.h" #endif /*ACE_GLOBAL_MACROS_H*/